Home > Press > Long-sought way to make “nano-raspberries” may fight foggy windows and eyeglasses
![]() |
A new method for making raspberry-shaped nanoparticles could prevent windshields and eyeglasses from fogging. Credit: The American Chemical Society |
Abstract:
The Journal of Physical Chemistry C
In an advance toward preventing car windshields and eyeglasses from fogging up, researchers in China are reporting development of a new way to make raspberry-shaped nanoparticles that can give glass a permanent antifogging coating. Their study is scheduled for the June 11 edition of ACS' The Journal of Physical Chemistry C, a weekly publication.
Junhui He and colleagues note that researchers have been working on anti-fog technology for years. Fogged-up windows are a safety hazard and a nuisance that affect millions of people. Existing technology, including sprays that must be reapplied to stay effective, has many drawbacks. Researchers knew that raspberry-shaped nanoparticles could be the ideal solution by disrupting the process in which water droplets fog glass. Until now, however, there has been no commercially feasible way to make these particles.
The scientists describe an efficient one-step method for making nano-raspberries. In laboratory studies, the researchers coated glass slides with the particles, cooled the slide, and then exposed it to steam. Unlike ordinary glass, it remained crystal clear, opening the door to possible commercial applications, the researchers say.
####
For more information, please click here
Contacts:
Junhui He, Ph.D.
Functional Nanomaterials Laboratory
Technical Institute of Physics and Chemistry
Chinese Academy of Sciences
Beijing, China
Phone: 86-10-82543535
Fax: 86-10-82543535
Copyright © American Chemical Society (ACS)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |