Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Combination nanoparticles to fight cancer

May 13th, 2009

Combination nanoparticles to fight cancer

Abstract:
Korean chemists have assembled a multitalented nanoparticle that can hunt down, treat, and illuminate cancerous cells. The therapy combines diagnosis, treatment, and real-time monitoring of cancer progression, and although it may be several years before it reaches the market, it is a bold step towards useful nanoparticle-based medicine.

'We have created a new type of magnetic nanoparticle that is designed to target only highly cancerous cells without harming normal cells,' says Jinwoo Cheon, who led the research with Tae Gwan Park at Yonsei University in Seoul, South Korea. 'The particle is effective at delivering treatments to the cells and also has strong MRI and optical imaging capabilities.'

The particle has four key components. The core is a magnetic iron oxide nanoparticle, which can act as a contrast agent for MRI. Attached to the surface of this nanoparticle is the second component - a peptide that binds to integrin, a receptor found in higher quantities on the surface of cancerous cells. This allows the particle to tightly grip onto the target cells.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project