Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Nano-boxes from DNA origami

May 6th, 2009

Nano-boxes from DNA origami

Abstract:
Danish researchers have made a nano-sized box out of DNA that can be locked or opened in response to 'keys' made from short strands of DNA. By changing the nature or number of these keys, it should be possible to use the boxes as sensors, drug delivery systems or even molecular computers.

Jørgen Kjems, Kurt Gothelf and colleagues from Aarhus University, Denmark, have taken an existing technique known as 'DNA origami' into a whole new dimension. The technique traditionally uses a few hundred short DNA strands to staple longer DNA strands together to create two-dimensional nanostructures, usually building from a solid surface that supports the structures.

'But in this case you have things standing up,' says Kjems. 'And this makes the structures more fragile and much harder to image, so just to prove that you actually have your structure can be quite difficult,' he adds.

To make the box shape, the team took a long, circular single strand of DNA from a virus that infects bacteria called bacteriophage M13. This M13 sequence is a cheap source of single-stranded DNA and is convenient size for building with. To turn this ring of DNA into a box, the team used a computer to work out exactly the right combination of short strands of complementary DNA which could 'staple' the appropriate areas of the ring together to get the desired box shape. When they mixed the M13 strand with the 220 short 'staple strands' and heated them up for an hour, the boxes neatly self-assembled.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanobiotechnology

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Low-cost formulation reduces dose and increases efficacy of drug against worms: Praziquantel, usually administered in large tablets, is the only anthelmintic available on the market. New form of presentation uses nanotechnology and facilitates use by children and pets May 16th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project