Home > Press > Gel-Based Glue Fastens Snails to Wet Surfaces, Model for Surgical Adhesive
Abstract:
A species of slug (Arion subfuscus) produces a defensive gel it can chemically convert into a remarkably strong glue. Similar gel-based glues attach some snails firmly onto slippery rocks; tools are needed to pry them off. The tenacity of these glues on wet surfaces is difficult to match with artificial adhesives. Following up on their original research identifying the key characteristics controlling this transition from a water-based gel into a powerful yet flexible adhesive, researchers at Ithaca College have shed new light on the nature of the adhesive mechanism.
"The strength of the natural adhesive comes from the way long, rope-like polymers chemically tie together, or cross link, at certain points," said Andrew Smith, associate professor of biology. "In our previous studies we had shown that metals were essential to the formation of cross-links. This is unusual, as some combination of electrostatic and hydrophobic interactions are commonly responsible for the formation of cross-links in other gels."
Electrostatic interactions occur when a negatively charged group on one polymer is attracted to a positively charged group on another. Hydrophobic interactions take place when regions of a polymer don't interact with water, so they stick together to avoid contacting water.
"We used several approaches to break these interactions, and the treatments that normally disrupt them had no impact on the glue's mechanical integrity or ability to set," Smith said. "Our study conclusively showed that electrostatic and hydrophobic interactions do not play any detectable role. Removing metals alone caused the glue to fall apart. This was exciting and unexpected."
Removing the metals, however, didn't completely break down the gel. The researchers discovered that a specific protein was responsible for forming strong cross-links that were unaffected when the metals were removed after the glue set. But when metals were removed before the glue set, the cross-links didn't form.
"This is a very unusual material we're looking at," Smith said. "By discovering that metals are central to forming cross-links, we know there are several intriguing mechanisms that could hold the glue together."
For example, zinc, calcium and iron ions can bind very strongly to several molecules at the same time, thereby effectively joining them together. Iron and copper can also catalyze reactions that trigger strong cross-link formation.
"The significance of this is that we are much farther along the path to our goal of identifying how the glue works so that synthetic mimics can be made," Smith said.
The study, "Robust Cross-links in Molluscan Adhesive Gels: Testing for Contributions from Hydrophobic and Electrostatic Interactions," was published in "Comparative Biochemistry and Physiology-Part B: Biochemistry and Molecular Biology."
####
For more information, please click here
Contacts:
Keith Davis
assistant director
media relations
Ithaca College
(607) 274-1153
Copyright © Newswise
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||