Home > News > Better photocells from bigger Buckyballs
April 15th, 2009
Better photocells from bigger Buckyballs
Abstract:
Much research activity is presently devoted to organic photovoltaic devices (OPV), in particular ones comprising polymers as donors and a variety of C60 fullerenes with organic molecules attached as acceptors. Now, a group of scientists collaborating from several research institutions, namely the Georgetown University, Washington DC, Luna Innovations Inc., Virginia, the Friedrich-Alexander-Universität, Erlangen, Germany, the National Renewable Energy Laboratory, Colorado, and the University of Santa Barbara have developed a novel fullerene species for this application [Ross, et al., Nature Materials (2009), doi:10.1038/NMAT2379].
"We believe that our discovery is a significant contribution to the improvement in conversion efficiencies of organic solar cells," says Martin Drees, corresponding author. In contrast to the acceptor materials utilized to date, Drees and his colleagues used fullerenes large enough to incarcerate trimetallic nitrides (therefore called trimetallic nitride endohedral fullerenes, or TNEFs) and filled them with Lu3N. The main advantage over the presently used empty C60 molecules and their derivatives is the higher open circuit voltage. Drees and his group found values of about 890 mV (in comparison to 630 mV for present state-of-the-art C60 devices), in fact the highest reported for any fullerene OPV. The reason for the low voltage output of the C60 devices is the orbital mismatch of the donor polymer and the fullerene acceptors, a situation which the researchers could significantly improve by incorporating Lu3N-ions in the bigger fullerenes.
Source:
materialstoday.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |