Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > National Cancer Institute (NCI) Contracts with Aphios to Develop Nannotech Combination Therapy for Certain Cancers

Abstract:
Aphios Corporation today announced that it has entered into a contract with the National Cancer Institute (NCI) to develop Tdp-1 inhibitors either as a primary therapy or in combination with camptothecins for colon, breast, ovarian, leukemia and other cancers. The contract was made through the Small Business Innovative Research (SBIR) Phase I program.

National Cancer Institute (NCI) Contracts with Aphios to Develop Nannotech Combination Therapy for Certain Cancers

Woburn, Massachusetts | Posted on April 8th, 2009

The contract is to develop a combination therapeutic based on research conducted by scientists at the National Cancer Institute who have discovered that the enzyme Tyrosyl-DNA phosphodiesterase (Tdp1) can repair topoisomerase I (Top1)-DNA covalent complexes by hydrolyzing the tyrosyl-DNA bond [US Patent Pending]. Inhibiting Tdp1 has the potential to enhance the anticancer activity of topoisomerase I inhibitors such as camptothecins and to act as anti-proliferative agents.

Dr. Yves Pommier, lead scientist of this invention at the NCI states that "The development of Tdp1 inhibitors as anticancer agents can be envisioned as combinations of Tdp1 and Top1 inhibitors. Moreover, Tdp1 inhibitors might also be effective by themselves as anticancer agents."

Scientists at Aphios are developing a co-encapsulation formulation of the selected camptothecin and Tdp1 inhibitor in phospholipid nanosomes (small, uniform liposomes). Camptothecins are quite hydrophobic and will be packaged in the lipid bilayer. Tdp1 inhibitors such as tetracycline and neomycin are quite water-soluble and will be packaged in the aqueous core of phospholipid nanosomes [US Patents and US Patent Pending].
We anticipate that this nanosomal formulation will result in reduced systemic toxicity, due to the masking of the cytotoxic effects of camptothecins and Tdp1 inhibitors. Additionally, the stability of the lactone ring in the nanosomes will be improved as a result of protection from the neutral pH of the blood stream. By increasing residence time in the circulatory system, the nanosomes increase therapeutic efficacy of the combination drugs. Optionally, pegylated phospholipids will be utilized to provide steric hindrance that will further increase residence time and therapeutic efficacy as is done with Doxil®, liposome encapsulated doxorubicin. Furthermore, phospholipids linked with specific antibodies or ligands will be utilized to target the co-encapsulated camptothecin and Tdp1 inhibitor to specific cancers in the colon, lung or ovary. Such smart targeting will further reduce toxicities associated with both Top1 and Tdp1 inhibitors while increasing efficacy and therapeutic index.

The project described herein is supported by NCI Contract No. HHSN-261200800026C (NCI Control No. N43CM-2008-00026). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NCI and the National Institutes of Health.

####

About Aphios Corporation
Aphios Corporation is a biotechnology company that is developing enabling technology platforms including nanotechnology drug delivery platforms such as phospholipid nanosomes, biodegradable polymer nanospheres, and protein and crystal nanoparticles for the improved delivery of poorly water-soluble anticancer drugs, therapeutic proteins and siRNA molecules, as well as enhanced therapeutic products for health maintenance, disease prevention and the treatment of certain cancers, infectious diseases and CNS disorders.

For more information, please click here

Contacts:
Dr. Trevor P. Castor
President and CEO
Aphios Corporation
3-E Gill Street, New Boston Park
Woburn, Massachusetts 01801 USA
Tel: (001) (781) 932-6933
Fax: (001) (781) 932-6865

Copyright © Aphios Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project