Home > Press > Nanoparticles Open Door to Cancer Prevention
Abstract:
Perhaps the best way to fight cancer is to prevent it from developing in the first place, and based on newly published research from investigators at the University of Wisconsin-Madison, nanoparticles may be able to make cancer chemoprevention a reality.
Using nanoparticles made of a biocompatible polymer, the investigators were able to encapsulate a molecule isolated from green tea that triggers apoptosis and inhibits angiogenesis, two key biochemical events that could prevent cancer. Hasan Mukhtar, Ph.D., led the team that published its results in the journal Cancer Research.
One of the chief issues in chemoprevention—the use of biologically active molecules to thwart cancer before it gains a foothold in the body—is that any such agents must be exceedingly safe, since it is likely that a person at risk for cancer would need to take the chemopreventive agent on a regular basis for a long time. Because of this requirement, many investigators have been screening naturally occuring molecules for chemopreventive activity. One such molecule, the green tea component epigallocatechin-3-gallate (EGCG), has demonstrated chemopreventive potential in a wide range of in vitro and in vivo studies. However, the body rapidly degrades this compound, limiting its clinical utility.
The Wisconsin team solved this problem using nanoparticles. When the investigators loaded biocompatible polymer nanoparticles with EGCG, they boosted its cancer-preventing activity by more than tenfold. Additional experiments confirmed that this increase resulted from a significantly longer half-life for EGCG in the body. This longer half-life correlated with a reduction in serum prostate-specific antigen levels in animals with implanted human prostate tumors.
This work, which is detailed in the paper "Introducing nanochemoprevention as a novel approach for cancer control: proof of principle with green tea polyphenol epigallocatechin-3-gallate," was supported by the National Cancer Institute. Investigators from the Albany College of Pharmacy in New York also participated in this study. An abstract of this paper is available at the journal's Web site.
View abstract here cancerres.aacrjournals.org/cgi/content/abstract/69/5/1712
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||