Home > Press > Scientists make quantum leap in developing faster computers
Abstract:
Scientists have created a molecular device which could act as a building block for future generations of superfast computers
The researchers have created components that could one day be used to develop quantum computers - devices based on molecular scale technology instead of silicon chips and which would be much faster than conventional computers.
The study, by scientists at the Universities of Manchester and Edinburgh and published in the journal Nature, was funded by the European Commission.
Scientists have achieved the breakthrough by combining tiny magnets with molecular machines that can shuttle between two locations without the use of external force. These manoeuvrable magnets could one day be used as the basic component in quantum computers.
Conventional computers work by storing information in the form of bits, which can represent information in binary code - either as zero or one.
Quantum computers will use quantum binary digits, or qubits, which are far more sophisticated - they are capable of representing not only zero and one, but a range of values simultaneously. Their complexity will enable quantum computers to perform intricate calculations much more quickly than conventional computers.
Professor David Leigh, of the University of Edinburgh's School of Chemistry, said: "This development brings super-fast, non-silicon based computing a step closer.
"The magnetic molecules involved have potential to be used as qubits, and combining them with molecular machines enables them to move, which could be useful for building quantum computers. The major challenges we face now are to bring many of these qubits together to build a device that could perform calculations, and to discover how to communicate between them."
Professor Richard Winpenny, of the University of Manchester's School of Chemistry, said: "To perform computation we have to have states where the qubits speak to each other and others where they don't - rather like having light switches on and off.
"Here we have shown we can bring the qubits together, control how far apart they are, and potentially switch the device between two or more states. The remaining challenge is to learn how to do the switching, and that's what we're trying to do now."
####
About Universities of Manchester
The University of Manchester has an exceptional record of generating and sharing new ideas and innovations.
Many of the advances of the 20th century began at the University, such as the work by Rutherford leading to the splitting of the atom and the developments of the world's first modern computer in 1948.
Today, we are one of the world's top centres for biomedical research, leading the search for new treatments for life-threatening diseases. We are also at the forefront of new discoveries in science and engineering.
Contacts:
Deborah Haile
University of Manchester Media Relations Office
0161 275 8387
Copyright © Universities of Manchester
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||