Home > News > White light microscope
March 1st, 2009
White light microscope
Abstract:
Silver nanoparticles that can generate white light could improve microscopy in research into cancer and bone diseases according to a paper in the March issue of Nano Letters.
Optical microscopy is commonly thought to use optical transmission measurements, whereas most modern microscopists working with contemporary high-resolution microscopes use fluorescence. But, fluorescence has its limitations.
Powerful as it is, fluorescence microscopy has a fatal flaw - the need to treat any specimen with fluorescent dyes or stains. The application of these dyes often alters or harms tissues and can kill living cells. So, although fluorescence microscopy is unsurpassed in acquisition speed and spatial resolution it is severely limited in this sense.
John Lupton and colleagues, Debansu Chaudhuri, Jeremy Galushs, Manfred Walter, Nicholas Borys, and Michael Bartl in the Department of Physics and Department of Chemistry, at the University of Utah, Salt Lake City, hope to circumvent this problem without resorting to old-style microscopy.
They have worked clusters of silver nanoparticles. Silver nanoparticle films have been used for single molecule surface-enhanced Raman scattering (SERS) studies before with one- or two-photon excitation. They can thus act as a tuneable beacon of light for transmission microscopy carried out at resolutions below the diffraction limit. This limit normally stymies conventional microscopy. The researchers suggest that their success could allow researchers to investigate cancerous tissues, diseased bone and other diffuse materials in unprecedented detail and without dyes to damage the sample.
Source:
spectroscopynow.com
Related News Press |
Imaging
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||