Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > White light microscope

March 1st, 2009

White light microscope

Abstract:
Silver nanoparticles that can generate white light could improve microscopy in research into cancer and bone diseases according to a paper in the March issue of Nano Letters.

Optical microscopy is commonly thought to use optical transmission measurements, whereas most modern microscopists working with contemporary high-resolution microscopes use fluorescence. But, fluorescence has its limitations.

Powerful as it is, fluorescence microscopy has a fatal flaw - the need to treat any specimen with fluorescent dyes or stains. The application of these dyes often alters or harms tissues and can kill living cells. So, although fluorescence microscopy is unsurpassed in acquisition speed and spatial resolution it is severely limited in this sense.

John Lupton and colleagues, Debansu Chaudhuri, Jeremy Galushs, Manfred Walter, Nicholas Borys, and Michael Bartl in the Department of Physics and Department of Chemistry, at the University of Utah, Salt Lake City, hope to circumvent this problem without resorting to old-style microscopy.

They have worked clusters of silver nanoparticles. Silver nanoparticle films have been used for single molecule surface-enhanced Raman scattering (SERS) studies before with one- or two-photon excitation. They can thus act as a tuneable beacon of light for transmission microscopy carried out at resolutions below the diffraction limit. This limit normally stymies conventional microscopy. The researchers suggest that their success could allow researchers to investigate cancerous tissues, diseased bone and other diffuse materials in unprecedented detail and without dyes to damage the sample.

Source:
spectroscopynow.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project