Home > News > Probing the brain wirelessly
March 1st, 2009
Probing the brain wirelessly
Abstract:
IR-absorbing lead selenide particles form the basis of a method for the study of neuronal activation in samples of brain tissues without the need for hard-wired electrodes. The technique instead utilises light-triggered nanostructured semiconductor photoelectrodes to probe activity.
Philip Larimer, Richard Todd Pressler, and Ben Strowbridge of the Department of Neurosciences, at Case Western Reserve University, in Cleveland, Ohio, working with Yixin Zhao and Clemens Burda in CWRU's Center for Chemical Dynamics and Nanomaterials Research explain their approach in the current issue of Angewandte Chemie.
Understanding brain function remains one of the great challenges facing science. For example, simply understanding how brain regions process synaptic inputs to generate defined responses is a puzzle.
One particularly promising avenue of research in this area remains the study of the electrical conduction of stimuli by nerve cells, neurons. However, in order to study neuronal circuits in detail, a sharp metal electrode is usually introduced into the living brain or a brain slice to introduce a current. Such a crude approach is too blunt a probe to discern the highly complex activation patterns of natural nerve stimuli. Moreover, this approach causes direct damage to tissue because of unwanted electrochemical side reactions.
Source:
spectroscopynow.com
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |