Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Tiny 'lab-on-a-chip' detects pollutants, disease and biological weapons

This is Yosi Shacham-Diamand of Tel Aviv University.

Credit: AFTAU
This is Yosi Shacham-Diamand of Tel Aviv University.
Credit: AFTAU

Abstract:
Tel Aviv University scientists develop highly accurate nano-scale biomonitoring solution

Tiny 'lab-on-a-chip' detects pollutants, disease and biological weapons

New York, NY and Tel Aviv, Israel | Posted on March 1st, 2009

For centuries, animals have been our first line of defense against toxins. A canary in a coalmine served as a living monitor for poisonous gases. Scientists used fish to test for contaminants in our water. Even with modern advances, though, it can take days to detect a fatal chemical or organism.

Until now. Working in the miniaturized world of nanotechnology, Tel Aviv University researchers have made an enormous -- and humane -- leap forward in the detection of pollutants.

A team led by Prof. Yosi Shacham-Diamand, vice-dean of TAU's Faculty of Engineering, has developed a nano-sized laboratory, complete with a microscopic workbench, to measure water quality in real time. Their "lab on a chip" is a breakthrough in the effort to keep water safe from pollution and bioterrorist threats, pairing biology with the cutting-edge capabilities of nanotechnology.

"We've developed a platform -- essentially a micro-sized, quarter-inch square 'lab' -- employing genetically engineered bacteria that light up when presented with a stressor in water," says Prof. Shacham-Diamand. Equipment on the little chip can work to help detect very tiny light levels produced by the bacteria.

Instead of using animals to help detect threats to a water supply, Prof. Shacham-Diamand says "Our system is based on a plastic chip that is more humane, much faster, more sensitive and much cheaper."

Tiny Lab-on-Chip Boosts Accuracy

"Basically, ours is an innovative advance in the 'lab on a chip' system," says Prof. Shacham-Diamand. "It's an ingenious nano-scale platform designed to get information out of biological events. Our solution can monitor water with never-before-achieved levels of accuracy. But as a platform, it can also be used for unlimited purposes, such as investigating stem cell therapies or treating cancer."

According to published literature, Tel Aviv University is one of the top five universities in the world pioneering the "lab on a chip" concept. The nanolabs can be used to evaluate several biological processes with practical applications, such as microbes in water, stem cells, or breast cancer development. Prof. Shacham-Diamand's active lab group publishes a major paper about once a month in this field, most recently in the journal Nano Letters.

Environmental, Medical and Defense Uses for "Mini-Labs"

Partnering with other Israeli scientists, Tel Aviv University is currently building and commercializing its water-testing mini-labs to measure and monitor how genetically engineered bacteria respond to pollution such as E. coli in water. Cities across Israel have expressed interest in the technology, as has the state of Hawaii.

But other uses are being explored as well. Funded by a $3 million grant from the United States Department of Defense Projects Agency (DARPA), the new lab-on-a-chip could become a defensive weapon that protects America from biological warfare. His system, Prof. Shacham-Diamand says, can be also modified to react to chemical threats and pollution. With some tweaking here and there, it can be updated as new threats are detected.

Prof. Shacham-Diamond's research has also attracted the interest of cancer researchers around the world. He recently addressed 400 physicians at a World Cancer Conference who are seeking new devices to measure and monitor cancer and pharmaceuticals. "They need sensors like Tel Aviv University's lab on a chip. It's a hot topic now," says Prof. Shacham-Diamond.

####

About American Friends of Tel Aviv University
American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading and most comprehensive center of higher learning. In independent rankings, TAU's innovations and discoveries are cited more often by the global scientific community than all but 20 other universities worldwide.

Internationally recognized for the scope and groundbreaking nature of its research programs, Tel Aviv University consistently produces work with profound implications for the future.

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Environment

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

New method in the fight against forever chemicals September 13th, 2024

Catalyzing environmental cleanup: A highly active and selective molecular catalyst and electrified membrane: Innovative electrochemical catalyst breaks down trichloroethylene pollutants at unprecedented rate September 13th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project