Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New 'bubble' targets only cancer cells

This is Professor Rimona Margalit of Tel Aviv University.

Credit: AFTAU
This is Professor Rimona Margalit of Tel Aviv University.
Credit: AFTAU

Abstract:
For millions of Americans with cancer, the side effects of chemotherapy and other treatment drugs can be devastating. But new drug-delivery research based on nano- and microtechnology from Tel Aviv University might provide much-needed relief, as well as more effective cancer treatment.

New 'bubble' targets only cancer cells

Tel Aviv, Israel | Posted on February 19th, 2009

New drug delivery technology developed by Prof. Rimona Margalit of Tel Aviv University's Department of Biochemistry allows drugs to target cancer cells specifically, leaving surrounding healthy cells intact and reducing the painful side effects of chemotherapy. The science utilizes tiny bubbles, visible only through powerful microscopes, that contain payloads of therapeutic drugs.

"This development is on the leading edge of the new frontier of drug delivery and cancer treatment," says Prof. Margalit. "Bubble technology can also be applied to other medical conditions, including diabetes, osteoarthritis, wounds, and infectious diseases. In twenty years, it could be widespread."

Target: Cancer

Currently, cancer drugs travel throughout the body delivering powerful medication to all the cells they encounter, both healthy and cancerous. When healthy cells are damaged by unnecessary medication, a patient can experience unpleasant side effects ranging from hair loss to nausea. More worrying are further health risks due to the damage that the medication does to the patient's immune system.

Called "drug carriers" recent reports of Prof. Margalit's new technology applied in both cancer and osteoarthritis therapies were published in Nature Nanotechnology, and in the Journal of Controlled Release (2008). The technology allows cancer treatment medication to be placed inside tiny bubbles so small that millions fit along a single inch. The surface of the bubbles contains an agent that allows them distinguish cancer cells from healthy ones. When the bubbles "recognize" a cancer cell, they deliver the medication they're carrying to that cell.

The positive results are twofold: More of the drug gets directly to the cancer cells, enhancing the effectiveness of the treatment, and healthy cells continue to function normally, protected against the painful side-effects of the medication.

Economics, Not Science, Is Researchers' Next Challenge

Prof. Margalit's drug carrier technology has already performed well in animal model studies. The next step is to apply the technology to humans. "Economics is the hold-up, not the science," explains Prof. Margalit, who is in the process of finding a pharmaceutical company to invest in the research.

Although the technology is still a decade or more from clinical trials, this promising discovery offers new hope in oncology.

####

About American Friends of Tel Aviv University
American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading and most comprehensive center of higher learning. In independent rankings, TAU's innovations and discoveries are cited more often by the global scientific community than all but 20 other universities worldwide.

Internationally recognized for the scope and groundbreaking nature of its research programs, Tel Aviv University consistently produces work with profound implications for the future.

For more information, please click here

Contacts:
George Hunka

212-742-9070

Copyright © American Friends of Tel Aviv University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project