Home > Press > New stretchable electrodes created to study stresses on cardiac cells
![]() |
Babak Ziaie, a Purdue associate professor of electrical and computer engineering, demonstrates a new "stretchable" electrode created in research with Stanford University to study how cardiac muscle cells, neurons and other cells react to mechanical stresses from heart attacks, traumatic brain injuries and other diseases. The devices are made by injecting a liquid alloy made of indium and gallium into thin microchannels between two sheets of a plastic polymer. Credit: Purdue News Service photo/Andrew Hancock |
Abstract:
Engineers at Purdue and Stanford universities have created stretchable electrodes to study how cardiac muscle cells, neurons and other cells react to mechanical stresses from heart attacks, traumatic brain injuries and other diseases.
The devices are made by injecting a liquid alloy made of indium and gallium into thin microchannels between two sheets of a plastic polymer, said Babak Ziaie, a Purdue associate professor of electrical and computer engineering.
Cell cultures are grown on top of the new "stretchable cell culture platform."
"We designed a simple and cost-effective process for fabricating these stretchable platforms," said Ziaie, who is working with Beth L. Pruitt, an assistant professor of mechanical engineering at Stanford, along with graduate students and other researchers at both universities. "What's special about this technology is that it allows you to electrically stimulate or monitor the cell population using electrodes while you are applying stress to the cells."
Stretching the cell cultures causes mechanical stresses like those exerted on tissues during heart attacks and traumatic brain injuries. The researchers have grown mice cardiac muscle cells on the platform and may grow cell cultures of neurons in future work. Cultures of stem cells also could be tested using the system to determine how mechanical stresses prompt the cells to differentiate into specific types of tissues, Ziaie said.
"You cannot stretch solid metal beyond a few percent because it will break, but we've been able to stretch these liquid platforms more than 40 percent of their original size," Ziaie said.
Findings are detailed in a paper being presented Monday (Jan. 26) during the 22nd IEEE International Conference on Micro Electro Mechanical Systems. The conference, sponsored by the Institute of Electrical and Electronics Engineers, will be in Sorrento, Italy.
"We demonstrated that the platform is biocompatible with human aortic muscle cells and mice heart cells," Ziaie said. "The cells adhered well to the polymer surface during mechanical strain and survived near and on the electrodes after two days of incubation. The platform also maintained its electrical capabilities after being stretched 100 times."
Purdue researchers designed and fabricated the platform at the Birck Nanotechnology Center in Purdue's Discovery Park. Stanford researchers grew cardiac muscle cell cultures on the device and tested the platform.
"We now hold the record for how much you can stretch an electrical conductor," Ziaie said.
The paper was written by Purdue electrical and computer engineering doctoral student Pinghung Wei, Stanford mechanical engineering doctoral student Rebecca Taylor, Purdue physics doctoral student Zhenwen Ding, Stanford mechanical engineering graduate student Gadryn Higgs, Stanford pediatrics postdoctoral research fellow James J. Norman, Pruitt and Ziaie.
####
For more information, please click here
Contacts:
Writer: Emil Venere
(765) 494-4709
Sources: Babak Ziaie
(765) 494-0725
Beth L. Pruitt
(650) 723-4559
Copyright © Purdue University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Abstract for the research in this release is available at
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |