Home > News > Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions
January 8th, 2009
Suppression of Metallic Conductivity of Single-Walled Carbon Nanotubes by Cycloaddition Reactions
Abstract:
The high carrier mobility of films of semiconducting single-walled carbon nanotubes (SWNTs) is attractive for electronics applications, but the presence of metallic SWNTs leads to high off-currents in transistor applications. The method presented here, cycloaddition of fluorinated olefins, represents an effective approach toward converting the "as grown" commercial SWNT mats into high-mobility semiconducting tubes with high yield and without further need for carbon nanotube separation. Thin-film transistors, fabricated from percolating arrays of functionalized carbon nanotubes, exhibit mobilities >100 square centimeters per volt-second and on-off ratios of 100,000. This method should allow for the use of semiconducting carbon nanotubes in commercial electronic devices and provide a low-cost route to the fabrication of electronic inks.
Source:
sciencemag.org
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |