Home > News > New routes to gram-scale graphene
December 13th, 2008
New routes to gram-scale graphene
Abstract:
Australian researchers have reported making grams of graphene using nothing more complicated than sodium and ethanol [1]. The process, according to team leader John Stride at the University of New South Wales, should help accelerate the progress of applications for a much-hyped material that's proved hard to manufacture cheaply.
Graphene - a single layer of carbon atoms arranged in a honeycomb lattice - has been hailed as the long-term future of electronics. Superb electrical conductivity, strength and flexibility make it an attractive material for everything from LCDs to transistors. In the nearer term, the flat carbon sheet may find use in many other applications, including batteries, composites and gas storage - though it will have to prove its advantages over carbon nanotubes.
But making large quantities of graphene cheaply is difficult. It can be produced by ripping layers of carbon from a chunk of graphite using sticky tape - the so-called 'Scotch tape' method. But sorting out the useful atomically thin flakes from thicker graphite debris is a painstaking, and thus expensive, process.
Source:
rsc.org
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Materials/Metamaterials/Magnetoresistance
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |