Home > Press > NC State finds new nanomaterial could be breakthrough for implantable medical devices
Abstract:
A team of researchers led by North Carolina State University has made a breakthrough that could lead to new dialysis devices and a host of other revolutionary medical implants. The researchers have found that the unique properties of a new material can be used to create new devices that can be implanted into the human body - including blood glucose sensors for diabetics and artificial hemo-dialysis membranes that can scrub impurities from the blood.
Researchers have long sought to develop medical devices that could be implanted into patients for a variety of purposes, such as monitoring glucose levels in diabetic patients. However, existing materials present significant problems. For example, devices need to be made of a material that prevents the body's proteins from building up on sensors and preventing them from working properly. And any implanted device also needs to avoid provoking an inflammatory response from the body that would result in the body's walling off the device or rejecting it completely.
Now a new study finds that nanoporous ceramic membranes may be used to resolve these issues. Dr. Roger Narayan - an associate professor in the joint biomedical engineering department of NC State and the University of North Carolina at Chapel Hill - led the research and says the nanoporous membranes could be used to "create an interface between human tissues and medical devices that is free of protein buildup."
The new research, published in a special issue of Biomedical Materials, is the first in-depth study of the biological and physical properties of the membranes. The study suggests that the human body will not reject the nanoporous ceramic membrane. Narayan adds that this could be a major advance for the development of kidney dialysis membranes and other medical devices whose development has been stalled by poor compatibility with human tissues. Narayan was also the lead researcher on the team that first developed these new materials.
Narayan's co-authors on the paper include NC State materials science engineering doctoral students Ravi Aggarwal and Wei Wei; NC State postdoctoral research associate Dr. Chunming Jin; Dr. Nancy Monteiro-Riviere, professor of investigative dermatology and toxicology at NC State's College of Veterinary Medicine and the Center for Chemical Toxicology Research and Pharmacokinetics; and Rene Crombez and Dr. Weidian Shen of Eastern Michigan University.
Note to editors: The study abstract follows.
"Mechanical and biological properties of nanoporous carbon membranes"
Authors: Dr. Roger J. Narayan, Ravi Aggarwal, Wei Wei, Dr. Chunming Jin, Dr. Nancy A. Monteiro-Riviere, North Carolina State University; Rene Crombez, Dr. Weidian Shen, Eastern Michigan University
Published: Aug. 8, 2008, in Biomedical Materials
Abstract: Implantable blood glucose sensors have inadequate membrane-tissue interfaces for long term use. Biofouling and inflammation processes restrict biosensor membrane stability. An ideal biosensor membrane material must prevent protein adsorption and exhibit cell compatibility. In addition, a membrane must exhibit high porosity and low thickness in order to allow the biosensor to respond to analyte fluctuations. In this study, the structural, mechanical and biological properties of nanoporous alumina membranes coated with diamond-like carbon thin films were examined using scanning probe microscopy, nanoindentation and MTT viability assay. We anticipate that this novel membrane material could find use in immunoisolation devices, kidney dialysis membranes and other medical devices encountering biocompatibility issues that limit in vivo function.
####
For more information, please click here
Contacts:
Matt Shipman
919-515-6386
Copyright © North Carolina State University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |