MENU

Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Self-propelled microbots navigate through blood vessels

October 31st, 2008

Self-propelled microbots navigate through blood vessels

Abstract:
The 1966 science-fiction movie Fantastic Voyage famously imagined using a tiny ship to combat disease inside the body. With the advent of nanotechnology, researchers are inching closer to creating something almost as fantastic. A microscopic device that could swim through the bloodstream and directly target the site of disease, such as a tumor, could offer radical new treatments. To get to a tumor, however, such a device would have to be small and agile enough to navigate through a labyrinth of tiny blood vessels, some far thinner than a human hair.

Researchers at the École Polytechnique de Montréal, in Canada, led by professor of computer engineering Sylvain Martel, have coupled live, swimming bacteria to microscopic beads to develop a self-propelling device, dubbed a nanobot. While other scientists have previously attached bacteria to microscopic particles to take advantage of their natural propelling motion, Martel's team is the first to show that such hybrids can be steered through the body using magnetic resonance imaging (MRI).

To do this, Martel used bacteria that naturally contain magnetic particles. In nature, these particles help the bacteria navigate toward deeper water, away from oxygen. "Those nanoparticles form a chain a bit like a magnetic compass needle," says Martel. But by changing the surrounding magnetic field using an extended set-up coupled to an MRI machine, Martel and his colleagues were able to make the bacteria propel themselves in any direction they wanted.

Source:
technologyreview.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Nanomedicine

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project