Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Near-Infrared Nanoparticles Shine a Bright Light on Cancer

Abstract:
A new nanoparticle-enabled imaging method for breast cancer has been developed by a team of scientists from Penn State. Their research, utilizing encapsulated fluorescent molecules in calcium phosphate nanoparticles and nontoxic near infrared (NIR) imaging, appears in the journal ACS Nano.

Near-Infrared Nanoparticles Shine a Bright Light on Cancer

Bethesda, MD | Posted on October 27th, 2008

More effective early detection of diseases is one of the promises of nanotechnology. Current imaging methods, such as x-rays and magnetic resonance imaging, are limited in the size of tumors they can detect in the depth they can penetrate the body, and by their potential side effects. Another promising imaging technique, NIR bioimaging, is a noninvasive, painless, and nonionizing form of radiation that operates at wavelengths just above that of visible light. By combining NIR imaging with nanoparticles containing an NIR fluorescing dye, indocyanine green, the researchers were able to detect 5-mm diameter breast cancer tumors in a live mouse model over a period of 4 or more days.

Indocyanine green is the only NIR organic dye approved by the FDA for use in the human body. The nanoparticles, which are around 20 nanometers in diameter, are made of calcium phosphate, a biocompatible material that has long been used as a bone replacement. Unlike other nanoparticles considered for imaging and drug delivery, the biodegradable components of calcium phosphate nanoparticles are already widely present in the bloodstream.

In addition to the combination of NIR imaging and nanoparticles, a second innovation is the development of a fundamentally new method for processing nanoparticulates. The process is called van der Waals high-performance liquid chromatography.

Materials scientist Jim Adair, Ph.D., whose team synthesized the particles, said, "Our technique takes advantage of the large van der Waals forces associated with particles, as opposed to the small van der Waals forces associated with molecules, atoms, and ions. The hard part in the synthesis was making sure the particles did not clump together. The critical stage was the laundering of all the nonessential byproducts associated with the synthesis. By the end, we had a very clean suspension of particles in which all the spectator ions, molecules, and atoms had been washed away from the basic nanoparticles."

Dr. Adair's group then teamed with Mark Kester, Ph.D., and his colleagues to demonstrate that their nanoparticles provide the fluorescent dye with 200-percent greater photoefficiency compared with indocynine green injected into the bloodstream, with a 500-percent greater photostability. In a separate experiment discussed in the paper, the researchers were able to image through 3 centimeters of dense pig muscle tissue, which should correlate to at least 10 centimeters, and likely much deeper, in patients, according to Dr. Adair. The investigators then injected these nanoparticles into mice with implanted human breast tumors and were able to image 5-m diameter tumors within 24 hours after injection.

####

About National Cancer Institute
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for In Vivo Imaging of Human Breast Cancer.”

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project