Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Teaching Nano to Swim

October 14th, 2008

Teaching Nano to Swim

Abstract:
Ayusman Sen, head of the Department of Chemistry at Penn State, makes tiny, metallic objects do something extraordinary -- he makes them swim. Sen's work is driven by catalysis, the chemical phenomenon whereby a substance accelerates a chemical reaction but emerges unchanged at the end of the process.

The chemical reaction upon which he and his team of students and colleagues focus their efforts is the well-known redox reaction, in which electrons and protons are broken away from their parent atoms and are pumped back and forth between substances, resulting in the liberation of energy during the process.

That energy manifests itself as an electrical gradient in the fluid surrounding a micro particle or nanomotor. Frequently, the motor is one of the group's two-micron-long platinum-gold nanorods. In most cases, the fluid starts out as a dilute solution of hydrogen peroxide which, upon being catalytically oxidized by the platinum tip of a nanorod, results in oxygen and also in electrons and protons that flow from bow to stern; electrons inside the rod; and an equal number of protons in the fluid along the outside of the rod. At the stern, the electrons and protons catalytically reduce hydrogen peroxide to water. The protons flowing from stem to stern function like paddles propelling the nanorod toward its platinum forward end, or if the nanorod is stationery, pumping water around it toward the aft end.

Source:
physorg.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project