Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanobubbles Deliver Targeted Cancer Drugs Using Ultrasound

Abstract:
Using a combination of polymers that respond to temperature, a research team at the University of Utah has developed a multifunctional nanoparticle that can image tumors using ultrasound and simultaneously deliver cell-damaging energy and anticancer drugs to those tumors. In addition, these nanoparticles appear to act specifically on tumors and not on healthy tissue.

Nanobubbles Deliver Targeted Cancer Drugs Using Ultrasound

Bethesda, MD | Posted on September 27th, 2008

Reporting its work in the journal Ultrasonics, a research team headed by Natalya Rapoport, D.Sc., describes its development of nanoparticles designed to turn into larger microscale bubbles at body temperature. These nanoparticles are made of perfluorocarbons, which interact strongly with ultrasound, and small amounts of two different biocompatible polymers derived from poly(ethyleneglycol) (PEG). By adjusting the relative amounts of the two PEG-based polymers, the investigators found that they could create nanoparticles that were stable at room temperature but that at body temperature would eventually combine to create ultrasound-responsive microbubbles. The researchers also demonstrated that they could load therapeutic doses of doxorubicin, a potent anticancer drug, into these nanoparticles and that the drug remained entrapped when the transition from nanoparticles to microbubbles occurred.

When injected into tumor-bearing mice, the nanoparticles retain their size long enough to travel to tumors and seep out of the leaky blood vessels that surround solid tumors. Once in the tumors, the nanoparticles begin coalescing into larger microbubbles that are then readily visible using standard ultrasound imaging instruments. Once tumor imaging is complete, focused ultrasound is then directed at the tumors, triggering drug release within the tumors. In addition, ultrasound energy causes the microbubbles to explode, which can damage nearby cancer cell membranes and further enhance drug uptake. Tumor-bearing mice treated with these nanoparticles showed dramatic tumor regression after two treatments spread 1 week apart.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Drug-Loaded Nano/Microbubbles for Combining Ultrasonography and Targeted Chemotherapy.”

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project