Home > News > Colloids twist like DNA
September 17th, 2008
Colloids twist like DNA
Abstract:
French scientists have used magnetic colloids to make self-assembling, helical structures reminiscent of DNA. Similar methods could be used to make tiny, self-propelling objects and colloidal models that mimic the assembly of complex, naturally occurring molecules.
The helices are formed from chains of dumbbell-shaped silica spheres, which are larger at one end than at the other and encircled by a magnetic 'waist' of iron oxide. In a magnetic field, the waists are attracted to each other, but as a new dumbbell approaches the growing chain it rotates to align its waist with the field. Because the dumbbells are asymmetric, the chain begins to twist into a helix.
Jerome Bibette, who led the team at the Industrial Physics and Chemistry Higher Educational Institution in Paris, says the effect resembles the way that subunits of a polymer approach each other in order to avoid steric hindrance. 'You cannot escape from the direction of polymerisation. It's imposed by nature. That's the game of chemistry and we have recreated this game with just silica spheres and magnetic waists.'
Source:
rsc.org
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |