Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Calculation of graphene's ideal strength confirmed by tests

September 15th, 2008

Calculation of graphene's ideal strength confirmed by tests

Abstract:
In 2007, Prof. MING Pingbing from the CAS Academy of Mathematics and Systems Science and his colleagues made a calculation on the ideal strength of grapheme, a promising carbon material. One year later, their work is verified by an experiment that was reported recently in Science.

Story:
Grapheme, discovered in 2004 by a research team from Manchester University in UK, is a relatively large-scale one-atom thick layer of graphite with remarkable electric characteristics. Experts believe that the nano-transistor made from such a material might greatly raise the operating speed of computers.

The ideal strength refers to the highest achievable strength of a defect-free crystal at 0K. It is a crucial theoretical parameter because it plays a critical role in characterizing the nature of chemical bonding of the crystal. The study of ideal strength can tell us a lot about why some materials are intrinsically brittle, while others are intrinsically ductile.

Via the method of first-principle calculation and teaming up with LIU Fang from the Central University of Finance and Economics in Beijing and LI Ju from the Ohio State University, Ming carried out a careful ab initio study of the ideal tensile strength of flat graphene, as structural motif for carbon nanotubes, nanofibers and other graphene-based materials. The results show that that the value of the monolayer graphene's intrinsic strength is between 110-121GPa, indicating that graphene is the strongest material ever discovered so far.

The results are confirmed by the observation of a research group with the Columbia University in US in the first ever successful experiment to measure the ideal strength of graphene in laboratory. Published by the 18 July issue of Science, the work showed the value was 130±10GPa. These experiments establish graphene as the strongest material ever measured, and show that atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.

Experts say that this show that scientific computation can play a critical role in scientific exploration, including the development of new materials.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project