Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene pioneers follow in Nobel footsteps

Abstract:
Two physicists from The University of Manchester who discovered the world's thinnest material have scooped a major award for their work.

Graphene pioneers follow in Nobel footsteps

UK | Posted on September 2nd, 2008

Professor Andre Geim FRS and Dr Kostya Noveselov of the Centre of Mesoscience and Nanotechnology have been awarded the prestigious Europhysics Prize for discovering graphene - and also their subsequent work to reveal its remarkable electronic properties.

Graphene is a one-atom thick gauze of carbon atoms resembling chicken wire. This incredible new material has rapidly become one of the hottest topics in materials science and solid-state physics.

Presented since 1975, the Europhysics Prize is one of the world's most prestigious awards for condensed matter physics.

Many winners have subsequently been awarded the Nobel Prize in recognition of their achievements, including the last year Nobel Laureates Albert Fert, Peter Grünberg and Gerhard Ertl.

The Europhysics Prize recognizes recent work by one or more individuals, which, in the opinion of the European Physical Society, represents scientific excellence.

The 2008 Award was presented at the 22nd General Conference of the EPS Condensed Matter Division in Rome.

Aside from the prestige, Prof Geim and Dr Novoselov will share a cash prize of Euros 10,000.

Since the discovery of graphene in 2004, Prof Geim and Dr Novoselov have published numerous research papers in prestigious journals such as Science and Nature, which have demonstrated the exquisite new physics for the material and its potential in novel applications such as transistors just one atom thick and sensors that can detect just a single molecule of a toxic gas.

Prof Geim said: "To receive this award is a great honour. We have been working very hard and putting in long hours for the last five years. Hundreds of other researchers have now joined us in studying graphene.

"But still we have not yet explored even a tip of the iceberg. Graphene continues to surprise us beyond our wildest imagination.

"It works like a magic wand - whatever property or phenomenon you address with graphene, it brings you back a sheer magic.

"A couple of years ago, I was rather pessimistic about graphene-based technologies coming out of research labs any time soon. I have to admit I was wrong. They are coming sooner rather than later.

"In ten years time I believe the word graphene will be as widely known to the public as silicon."

####

About University of Manchester
Britain's largest single-site university with a proud history of achievement and an ambitious agenda for the future.

The University has an exceptional record of generating and sharing new ideas and the quality, breadth and volume of its research activity is unparalleled in the UK.

For more information, please click here

Contacts:
The University of Manchester
Oxford Road
Manchester, M13 9PL, UK
Tel: +44 (0) 161 306 6000

Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project