Home > Press > Revealed: The secret of plasma heating
Abstract:
Researchers at the Ruhr University in Bochum (RUB) discover mechanism for energy coupling
Physical Review Letters: Electrons build up self-excited oscillation energy
The secret of electron heating in low temperature plasmas has been discovered by the Bochum researchers at the Center of Excellence "Plasma Science and Technology" (CPST) at the Ruhr University - who have thereby found the answer to the question which has been puzzling scientists for decades of why particularly the electrons in such plasmas are so hot. The non-linear behavior of the boundary sheath causes the electric current flowing in the plasma to oscillate. This results in an increase of the electrical current, and thus in the heating of the plasma. This previously unknown mechanism called "non-linear electron resonance heating" is the subject of a report by researchers in the current issue of the world's foremost physics letters journal "Physical Review Letters", which will appear in print on Friday, Aug. 29.
Basic understanding after 30 years
With their research results the Bochum Electrical Engineers Dr. Thomas Mussenbrock and Prof. Ralf Peter Brinkmann (Institute for Theoretical Electrical Engineering at the Ruhr University of Bochum) together with colleagues from the University of California at Berkeley surrounding Prof. Mike Lieberman have contributed to basic understanding of so-called low temperature plasma, which has already been in industrial use for over 30 years. "Since the nineteen seventies vigorous technical debates have been in progress regarding the function of plasma, which, however, have not led to any conclusive results. In particular, we do not fully understand the exact energy coupling mechanism", stated Thomas Mussenbrock. "Ever since plasma has been discovered and utilized, significant differences have existed between theoretical predictions on the behavior of the plasma and actual measurements." The mechanism now discovered at the Ruhr University provides a new approach for explaining the heating mechanisms in low temperature plasma for the first time.
Versatile types of plasma
Without plasma, no Pentium: For example electrically excited gases can be used to form the structures on microchips by removing or depositing materials in the nanometer range. Today plasma-based processes already account for nearly one-half of all processing steps in the field of microelectronics. But plasma technology is not only essential here; it is also used in lighting, environmental and medical engineering. One of the particular characteristics of the low temperature plasmas used is the number of electrons contained with temperatures of over 10,000 degrees Celsius - in contrast to ions present as well as neutral atoms and molecules, which are comparatively cold at virtually room temperature . This thermal non-equilibrium is what initiates chemical reactions and other processes, making low temperature plasmas so versatile.
Key to specific utilization
The question of why the electrons could become so hot particularly at very low gas pressures, was not clarified completely up to this time. Researchers at CPST have now been successful in proving this "non-linear electron resonance heating" theoretically and experimentally. The basis of this mechanism is the intrinsic tendency of the plasma to oscillate. Excitation of a certain oscillation - starting from non-linear behavior of the plasma boundary sheath - causes a "self-excitation" of the oscillation in the electrical current flowing in the plasma. Theoretical studies have shown that non-linear electron resonance heating can more than double the efficiency of the energy coupling. Laboratory tests at CPST by Prof. Uwe Czarnetzki (Department of Physics and Astronomy) and Prof. Peter Awakowicz (Department of Electrical Engineering and Information Technology) have confirmed this result. The RUB researchers have simultaneously provided a new approach to understanding how plasma can be excited electrically for maximum efficiency. "Electron resonance can even be controlled specifically to initiate the mechanism", according to Thomas Mussenbrock.
Title picture
Thomas Mussenbrock, Ralf Peter Brinkmann, Michael A. Lieberman, Allan J. Lichtenberg, and Emi Kawamura: Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges. In: Physical Review Letters, 101, 085004 (2008). doi: 10.1103/PhysRevLett.101.085004 (online since 22.8.2008)
####
About Ruhr University Bochum
In a world in international competition the best capital to have is research. At the Ruhr-Universität, research is as prominent and diverse as the university itself. Bochum's research focus is in the life sciences (medical technology, neuroscience, protein research), plasma physics and technology, and materials science. The humanities have bundled their energies together with a comprehensive theme of "Global Change".
For more information, please click here
Contacts:
Dr. Thomas Mussenbrock
Prof. Ralf Peter Brinkmann,
Institute for Theoretical Electrical Engineering
Department of Electrical Engineering and Information Technology at RUB,
Tel. +49 (0)234/32-26338, -25663
Copyright © Ruhr University Bochum
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||