Home > Press > Air-purifying church windows early nanotechnology
![]() |
Associate Professor Zhu Huai Yong, from QUT's School of Physical and Chemical Sciences said that glaziers in medieval forges were the first nanotechnologists. |
Abstract:
Stained glass windows that are painted with gold purify the air when they are lit up by sunlight, a team of Queensland University of Technology experts have discovered.
Associate Professor Zhu Huai Yong, from QUT's School of Physical and Chemical Sciences said that glaziers in medieval forges were the first nanotechnologists who produced colours with gold nanoparticles of different sizes.
Professor Zhu said numerous church windows across Europe were decorated with glass coloured in gold nanoparticles.
"For centuries people appreciated only the beautiful works of art, and long life of the colours, but little did they realise that these works of art are also, in modern language, photocatalytic air purifier with nanostructured gold catalyst," Professor Zhu said.
He said tiny particles of gold, energised by the sun, were able to destroy air-borne pollutants like volatile organic chemical (VOCs), which may often come from new furniture, carpets and paint in good condition.
"These VOCs create that 'new' smell as they are slowly released from walls and furniture, but they, along with methanol and carbon monoxide, are not good for your health, even in small amounts," he said.
"Gold, when in very small particles, becomes very active under sunlight.
"The electromagnetic field of the sunlight can couple with the oscillations of the electrons in the gold particles and creates a resonance.
"The magnetic field on the surface of the gold nanoparticles can be enhanced by up to hundred times, which breaks apart the pollutant molecules in the air."
Professor Zhu said the by-product was carbon dioxide, which was comparatively safe, particularly in the small amounts that would be created through this process.
He said the use of gold nanoparticles to drive chemical reactions opened up exciting possibilities for scientific research.
"This technology is solar-powered, and is very energy efficient, because only the particles of gold heat up," he said.
"In conventional chemical reactions, you heat up everything, which is a waste of energy.
"Once this technology can be applied to produce specialty chemicals at ambient temperature, it heralds significant changes in the economy and environmental impact of the chemical production."
####
About Queensland University of Technology
Queensland University of Technology (QUT) is a highly successful Australian university with an applied emphasis in courses and research. Based in Brisbane with a global outlook, it has 40,000 students, including 6000 from overseas, (QUT Statistics) and an annual budget of more than AU$500 million.
For more information, please click here
Contacts:
Rachael Wilson
QUT media officer
07 3138 1150
Copyright © Queensland University of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Environment
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Onion-like nanoparticles found in aircraft exhaust May 14th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |