Home > Press > Study reveals surprising details of the evolution of protein translation
Illinois crop sciences professor Gustavo Caetano-Anollés and postdoctoral researcher Feng-Jie Sun discovered that the two functional regions of the transfer RNA molecule have different evolutionary histories. |
Abstract:
A new study of transfer RNA, a molecule that delivers amino acids to the protein-building machinery of the cell, challenges long-held ideas about the evolutionary history of protein synthesis.
In the study, researchers report that the dual functions of transfer RNA (reading the genetic blueprint for a protein, and adding a specific amino acid to the protein as it is formed) appear to have originated independently of one another. The new findings are detailed in the July 30 Public Library of Science (PLoS) ONE.
University of Illinois crop sciences professor Gustavo Caetano-Anollés and postdoctoral researcher Feng-Jie Sun made the discovery by looking for clues to the evolution of protein translation in the sequence and structure of transfer RNA (tRNA).
"Structure is highly conserved, capturing information that is evolutionarily deep," Caetano-Anollés said. "It was only logical to focus on transfer RNA, a molecule that is believed to be very ancient and is truly central to the entire protein synthesis machinery."
During protein synthesis, tRNA's dual function is reflected in its unique
L-shaped structure. One end of the molecule decodes messenger RNA (a molecule that carries instructions for the sequence of amino acids in a protein), while the other transfers a specific amino acid to the growing protein chain.
In previous studies, scientists assumed that the two functional domains of tRNA had evolved together. Sun and Caetano-Anollés put this assumption to the test.
They began by constructing an evolutionary family tree based on the sequence and two-dimensional structures of tRNA molecules representing every domain of life (bacteria; the microbes known as archaea; and eucarya, the domain that includes animals, plants, fungi and many other organisms) as well as viruses.
There are several dozen tRNAs (each reads a specific region of the genetic blueprint for a protein and each carries only one of the 20-plus amino acids found in proteins) so the researchers looked for clues to their evolutionary histories by comparing their physical and functional traits.
They converted the unique features of the individual tRNA cloverleaf structures into coded characters, a process that allowed a computerized search for the most parsimonious (the simplest, most probable) tRNA family trees for different organismal lineages. In this way they were able to test competing evolutionary hypotheses against the data mined from the structure of the tRNA itself.
"Our findings uniquely focus on structure, the actual aspect of the molecule that encases its function," Caetano-Anollés said.
The analysis indicated that the two functions of the tRNA had different evolutionary histories, Sun said, which suggests that they were acquired at different points in time.
The study predicted that the loading of amino acids on tRNA molecules preceded the refinement of the genetic code into codons, the regions on the messenger RNA that are read by individual tRNAs.
"For the first time, we believe we make this distinction between the evolution of the genetic code (codon discovery) and the evolution of amino acid charging," Sun said.
Gustavo Caetano-Anollés is an affiliate of the U. of I. Institute for Genomic Biology.
Editor's notes: News Bureau Intern Kaushik Ragunathan contributed to this news release.
To reach Gustavo Caetano-Anollés, call 217-333-8172; e-mail: .
####
For more information, please click here
Contacts:
Diana Yates
Life Sciences Editor
217-333-5802
Copyright © University of Illinois at Urbana-Champaign
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||