Home > Press > Hydrogels provide scaffolding for growth of bone cells
Abstract:
Hyaluronic hydrogels developed by Carnegie Mellon University researchers may provide a suitable scaffolding to enable bone regeneration. The hydrogels, created by Newell Washburn, Krzysztof Matyjaszewski and Jeffrey Hollinger, have proven to encourage the growth of preosteoblast cells, cells that aid the growth and development of bone. Doctoral student Sidi Bencherif will present this research, Sunday, Aug. 17 at the 236th national meeting of the American Chemical Society in Philadelphia.
Currently, physicians are able to treat patients with damaged bone tissue, like those who have bone fractures that fail to heal, using demineralized bone matrix, a biological material obtained from cadavers. Demineralized bone matrix is rich in growth factor proteins which signal bone cells in the area to multiply and form complex bone tissue, while other proteins in the matrix regulate the activity of the growth factors. Demineralized bone matrix is in limited supply, and because it comes from a human donor, there is a risk of transmitting viruses to the recipient.
"Tissue engineering is an exciting field. We're creating solutions to problems that can significantly impact people's quality of life," said Washburn, an assistant professor of chemistry and biomedical engineering at Carnegie Mellon. "These gels have great promise in not only regenerating bone, but serving as a gene therapy delivery system."
Members of the Washburn lab have been developing synthetic alternatives to demineralized bone matrix. In the work being presented today, they created a flexible hydrogel using biologically active and degradable hyaluronic acid. Hydrogels, which are considered to be the state-of-the-art in tissue design, are made from polymers that swell in water to form a gel-like material. They interact with growth factors much like demineralized bone matrix does, providing scaffolding for bone cells to proliferate and form new tissue. The researchers found that, in vitro, the hydrogels promoted cell proliferation, differentiation and mineralization of pre-osteoblast cells.
Further research by the group has created a hybrid hydrogel that incorporates a nanogel structure. This new hydrogel promotes the differentiation of cells, much like the hyaluronic acid gel while also releasing nanogels in a controlled and targeted manner. The researchers hope that this structure could be used to partner tissue engineering with gene therapy.
This work was funded by the National Tissue Engineering Center, the National Institutes of Health and a 3M Non-Tenured Faculty grant.
####
About Carnegie Mellon University
Carnegie Mellon is a private research university with a distinctive mix of programs in engineering, computer science, robotics, business, public policy, fine arts and the humanities. More than 10,000 undergraduate and graduate students receive an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration, and innovation. A small student-to-faculty ratio provides an opportunity for close interaction between students and professors. While technology is pervasive on its 144-acre Pittsburgh campus, Carnegie Mellon is also distinctive among leading research universities for the world-renowned programs in its College of Fine Arts. A global university, Carnegie Mellon has campuses in Silicon Valley, Calif., and Qatar, and programs in Asia, Australia and Europe.
For more information, please click here
Contacts:
Jocelyn Duffy
412-963-7274
Copyright © Carnegie Mellon University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanomedicine
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |