Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Clemson scientists put a (nano) spring in their step

 The corresponding scalebar is in the unit of 1 micrometer (a millionth of a meter) and a nanometer (a billionth of a meter).
The corresponding scalebar is in the unit of 1 micrometer (a millionth of a meter) and a nanometer (a billionth of a meter).

Abstract:
Electronic devices get smaller and more complex every year. It turns out that fragility is the price for miniaturization, especially when it comes to small devices, such as cell phones, hitting the floor. Wouldn't it be great if they bounced instead of cracked when dropped?

Clemson scientists put a (nano) spring in their step

CLEMSON, SC | Posted on August 13th, 2008

A team of Clemson University researchers, led by Apparao Rao, professor of physics, has invented a way to make beds of tiny, shock-absorbing carbon springs which possibly could be used to protect delicate objects from damaging impacts. With collaborators at the University of California at San Diego, the team has shown that layers of these tiny springs called coiled carbon nanotubes, each a thousand times smaller than a human hair, can act as extremely resilient shock absorbers.

Similar coiled carbon nanotubes have been made before, yet Clemson researchers say this method is unique since beds of coiled carbon nanotubes can be grown in a single step using a proprietary hydrocarbon-catalyst mixture.

The group also envisions coiled nanotubes in soldiers' body armor, car bumpers and bushings and even as cushioning elements in shoe soles.

"The problem we have faced in the past is producing enough of these coiled carbon nanotubes at a reasonable cost to make a difference," said Rao. "Because our current method produces coiled nanotubes quickly in high yield, it can be readily scaled up to industrial levels. After formation, the coiled nanotubes can be peeled off in one piece and placed on other surfaces to form instant cushioning coatings."

In earlier studies, Rao and his team, along with UCSD collaborators, tested more conventional straight carbon nanotubes against coil-shaped nanotubes. When a stainless steel ball was dropped onto a single nanotube layer, the coiled nanotubes completely recovered from the impact, while the straight ones did not.

"It's like an egg toss," said Rao. "If you move your hand backward as you catch the egg and increase the time of contact over which the impact occurs, the impact will be less forceful and the egg will not break. It is the same phenomenon experienced in catching a baseball."

In previous work, Rao's group developed a process that coaxes a traditionally straight carbon nanotube to split into a "Y" shape. When powered by electrical voltages, the Y-branched nanotubes behave like tiny switches or transistors that process information.

"Our studies with carbon nanotubes have been ongoing for quite some time," said Rao. "Each step along the way has led to the next breakthrough, and each time we've learned more about how they grow and what their applications could be. We believe that carbon nanotubes have tremendous potential for the lives of each one of us."

####

For more information, please click here

Contacts:
Apparao Rao
(864) 656-6758


WRITER: Susan Polowczuk
(864) 656-2063

Copyright © Clemson University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project