Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Fluorescent Genetic Barcodes

August 13th, 2008

Fluorescent Genetic Barcodes

Abstract:
The capacity to track gene expression has been one of the biotechnology revolution's driving forces, so a technology that gives researchers more accuracy and sensitivity has the potential to lead to even more rapid progress. Dr Krassen Dimitrov of the Australasian Institute of Bioengineering and Nanotechnology at the University of Queensland has created what he calls "nanostrings". These are fluorescent pieces of nucleic acid that act like barcodes, binding to RNA molecules and providing researchers with an easy-to- read measure of the presence of biomolecules.

The technology has several advantages over the microarrays used currently. It provides a digital count, recording the exact number of RNA molecules, rather than an analogue result, where the correspondence between luminosity and the amount of molecules breaks down at high and low values. "Because this system can count the exact number of biomolecules present we can get an extremely accurate and sensitive picture of gene expression at a particular point in time," Dimitrov says.

Source:
redorbit.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project