Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > 'Superatoms' Open Window to Nanoparticle Chemistry

August 7th, 2008

'Superatoms' Open Window to Nanoparticle Chemistry

Abstract:
The principles behind the stability and electronic properties of miniscule nano­clusters of magnetic gold have been analyzed and described in a seminal study by researchers from the Georgia Institute of Technology (Atlanta), Stanford University (Palo Alto, Calif.), the University of Jyväskylä (Finland) and Chalmers University of Technology (Göterborg, Sweden). Gold and sulfur atoms aggregate in specific numbers and extremely symmetrical geometries, and can mimic the chemistry of single atoms of a different element. Researchers discovered that these clusters are stable because they behave like "superatoms" and exhibit a "divide and protect" bonding structure.

According to Robert Whetten, a professor at Georgia Tech's School of Physics and School of Chemistry and Biochemistry, although gold nanoparticles are widely used in many fields, nobody fully understood their molecular structures and physiochemical properties. Researchers use gold nanoparticles because of their stability and distinct optical, electronic, electrochemical and biolabeling properties.

Source:
semiconductor.net

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project