Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Protection built to scale--fish scale, that is: Primitive 'dinosaur eel' could inspire future body armor

Researchers at MIT's Institute for Soldier Nanotechnologies have unraveled exactly how the layers of the fish's scales complement one another to protect the soft tissues inside the fish body. Photo / Donna Coveney
Researchers at MIT's Institute for Soldier Nanotechnologies have unraveled exactly how the layers of the fish's scales complement one another to protect the soft tissues inside the fish body. Photo / Donna Coveney

Abstract:
Scientists seeking to protect the soldier of the future can learn a lot from a relic of the past, according to an MIT study of a primitive fish that could point to more effective ways of designing human body armor.

Protection built to scale--fish scale, that is: Primitive 'dinosaur eel' could inspire future body armor

Cambridge, MA | Posted on August 3rd, 2008

The creature in question is Polypterus senegalus, a fish whose family tree can be traced back 96 million years and who still inhabits muddy, freshwater pools in Africa. Unlike the vast majority of fish today, P. senegalus sports a full-body armored "suit" that most fish would have had millions of years ago--a throwback that helps explain why it is nicknamed the "dinosaur eel."

It was known that the fish's individual armored scales were comprised of multiple material layers--each of them about 100 millionths of a meter thick. But in a U.S. Army-funded study carried out through the MIT Institute for Soldier Nanotechnologies and published in the July 27 online issue of Nature Materials, a team of MIT engineers unraveled exactly how the layers complement one another to protect the soft tissues inside the fish body--particularly from a penetrating biting attack. P. senegalus is known to be territorial and attack members of its own species that are of similar or smaller size.

Specifically, the team used nanotechnological methods to measure the material properties through the thickness of one individual fish scale--about 500 millionths of a meter thick--and its four different layer materials. The different materials, the geometry and thickness of each layer, the sequence of the layers and the junctions between layers all contribute to an efficient design that helps the fish survive a penetrating attack such as a bite.

This research will help to better understand the relationship between a specific threat and the corresponding design of a protective armor, the team said.

"Such fundamental knowledge holds great potential for the development of improved biologically inspired structural materials, for example soldier, first-responder and military vehicle armor applications," said lead author Christine Ortiz, an associate professor in MIT's Department of Materials Science and Engineering.

"Many of the design principles we describe--durable interfaces and energy-dissipating mechanisms, for instance--may be translatable to human armor systems," Ortiz added.

One way in which the researchers tested the fish armor was by experimentally mimicking a biting attack on top of an individual scale that had been surgically removed from a living fish. The team found that the design of the P. senegalus armor kept the crack localized by forcing it to run in a circle around the penetration site, rather than spreading through the entire scale and leading to catastrophic failure, like many ceramic materials.

This study was carried out in collaboration with co-author Professor Mary Boyce, chair of MIT's Department of Mechanical Engineering. The study has two first authors: Benjamin Bruet, a former member of Ortiz's lab who recently received a PhD in materials science and engineering from MIT, and Juha Song, a joint doctoral student between Ortiz and Boyce.

####

For more information, please click here

Contacts:
Jen Hirsch
MIT News Office
Phone: 617-253-2700

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Discoveries

Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025

An earth-abundant mineral for sustainable spintronics: Iron-rich hematite, commonly found in rocks and soil, turns out to have magnetic properties that make it a promising material for ultrafast next-generation computing April 25th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025

Announcements

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project