Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Nanotube 'springboard' weighs bouncing atoms

July 21st, 2008

Nanotube 'springboard' weighs bouncing atoms

Abstract:
A tiny springboard constructed from a carbon nanotube can weigh individual atoms as they fall onto its surface. The device could replace high-resolution mass spectrometers, which tend to destroy the samples they weigh.

Resonators, materials that naturally oscillate strongly at certain frequencies, help to enhance the sound of many musical instruments.

But physicists also take advantage of resonators to calculate tiny masses. When extra mass lands on the surface of a resonator, it alters the frequency of the resonator, which gives physicists a means to calculate the extra mass.

Existing mass sensors of this kind, however, are constructed from relatively dense materials, such as quartz.

When atoms, which generally have a mass under a zeptogram (a trillionth of a billionth of a gram) land on the quartz, they are too small to make any impression on its vibration frequency. To weigh individual atoms, physicists need a resonator of a much lower density.
Hollow tubes

Kenneth Jensen, Kwanpyo Kim and Alex Zettl at the University of California in Berkeley have discovered that carbon nanotubes are perfect for the task.

Because nanotubes are hollow, they have a mass four orders of magnitude lower than specially built micromachined resonators. That brings their mass into the attogram range (a billionth of a billionth of a gram), and means they respond to single atoms.

Source:
technology.newscientist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project