Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanocantilevers Image Nanoparticles in Cells

Abstract:
Borrowing from a Nobel Prize-winning technique credited with starting the nanotechnology revolution, a team of researchers from Oak Ridge National Laboratory (ORNL) and Northwestern University's Nanomaterials for Cancer Diagnostics and Therapeutics has developed a method for imaging nanoparticles inside of cells. This technique should prove useful for studies of nanomaterials toxicology as well as those designed to improve nanoparticle-based drug delivery. This work has been published online in advance of print publication in the journal Nature Nanotechnology.

Nanocantilevers Image Nanoparticles in Cells

Bethesda , MD | Posted on July 9th, 2008

Ali Passian, Ph.D., and his colleagues at ORNL teamed with a research group headed by Vinayak Dravid, Ph.D., at Northwestern to probe the fate of individual nanoparticles inside of cells. Dravid and colleague Gajendra Shekhawat, Ph.D., had earlier developed a modified form of scanning electron microscopy, the Nobel Prize-winning invention, that uses nanoscale cantilevers as ultrasonic probes that can create a holographic image of a rapidly vibrating soft object lying beneath the cantilever as it scans that object. This new form of nanometer-resolution microscopy is known as scanning near-field ultrasonic holography, or SNFUH, and Dravid's research group has used it to generate detailed three-dimensional maps of soft objects.

Making use of SNFUH, Passian and his collaborators examined various cells taken from mice a week after the animals had been exposed to aerosolized nanoparticles known as single-walled carbon nanohorns, which are closely related to carbon nanotubes. Images of lung macrophages clearly revealed the exact location of individual nanohorns within the cells. The researchers also imaged nanohorns present inside red blood cells taken from the bloodstream, demonstrating that the nanohorns escape the lung and enter the circulatory system.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580


Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Imaging Nanoparticles in Cells by Nanomechanical Holography.”

Related News Press

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project