Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > AU engineering researchers develop breakthrough antimicrobial coatings

An Auburn University engineering research team works with a newly developed antimicrobial coating, which is made from a combination of lysozyme, a natural product with antimicrobial properties found in egg whites and human tears, with single-walled carbon nanotubes, which are strong, microscopic pieces of carbon. Pictured, left to right, are study leader and assistant professor Virginia Davis, postdoctoral fellow Dhriti Nepal, graduate student Shankar Balasubramanian and professor Aleksandr Simonian.
An Auburn University engineering research team works with a newly developed antimicrobial coating, which is made from a combination of lysozyme, a natural product with antimicrobial properties found in egg whites and human tears, with single-walled carbon nanotubes, which are strong, microscopic pieces of carbon. Pictured, left to right, are study leader and assistant professor Virginia Davis, postdoctoral fellow Dhriti Nepal, graduate student Shankar Balasubramanian and professor Aleksandr Simonian.

Abstract:
A team of researchers in Auburn University's Samuel Ginn College of Engineering has produced new antimicrobial coatings with potential to prevent diseases from spreading on contaminated surfaces - possibly solving a growing problem not only in hospitals but also in schools, offices, airplanes and elsewhere.

AU engineering researchers develop breakthrough antimicrobial coatings

Auburn, AL | Posted on July 9th, 2008

Led by Virginia Davis, assistant professor in the Department of Chemical Engineering, and Aleksandr Simonian, professor of materials engineering in the Department of Mechanical Engineering, the Auburn researchers mixed solutions of lysozyme, a natural product with antimicrobial properties found in egg whites and human tears, with single-walled carbon nanotubes, or SWNTs, which are strong, microscopic pieces of carbon. SWNTs, at one nanometer in diameter, are a perfect cylinder of carbon and keep the lysozyme intact in the coating.

"Lysozyme is used in some commercial products such as Biotene mouthwash," said Davis. "However, lysozyme itself is not as tough. Single-walled carbon nanotubes, on the other hand, are among the strongest materials known to man. While they are 100 times as strong as steel, they have only one-sixth the weight."

By using a process called layer-by-layer deposition, the team demonstrated the inability of intact Staphylococcus aureus cells to grow on antimicrobial surfaces.

"Disinfection generally requires rigorous cleaning with solvent that must remain wet for a given period of time to ensure that surface germs are killed," said Davis. "In contrast, we have created a surface that is inherently antimicrobial, so how long it is wet is not an issue."

Davis' research paper, "Strong Antimicrobial Coatings: Single-Walled Carbon Nanotubes Armored with Biopolymers," was recently featured in NanoLetters, a premier journal in the field, frequently cited by top researchers.

"The material presented in NanoLetters is only the beginning," said Davis. "We plan to adapt processing to enable the assembly of coatings on a much larger scale. As a foundation for future applications, the combination of single-walled carbon nanotubes with DNA, proteins and enzymes enables a range of possibilities for sensing and smart-functionality capabilities."

Davis' research and teaching expertise is related to SWNTs, their dispersion and shear alignment, which involves nanotube exploitation of specific properties and alignment across large spaces. She is a former student of Matteo Pasquali, associate professor of chemical and biomolecular engineering at Rice University, and Nobel Prize winner Richard E. Smalley. Simonian is a recognized expert in smart bio-functionalized materials and bio-sensing. He founded the biosensors laboratory at Yerevan Physics Institute in Armenia and serves as a member of the Auburn University Detection and Food Safety Center.

Graduate student Shankar Balasubramanian, whose expertise is in biosensors and antimicrobial materials, and postdoctoral fellow Dhriti Nepal, whose background is in SWNT-biopolymer dispersion, contributed to the project.

Davis' paper can be read online at
pubs.acs.org/cgi-bin/abstract.cgi/nalefd/asap/abs/nl080522t.html.

More information about research in the Department of Chemical Engineering or the Samuel Ginn College of Engineering at Auburn University is available at eng.auburn.edu.

####

For more information, please click here

Contacts:
Sally Credille

(334) 844-3447, or
Charles Martin

(334) 844-9986

Copyright © Auburn University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project