Home > Press > Nanophotonics Research by Northeastern University Physics Professor leads to Nanomanufactured Optical Lenses
![]() |
Abstract:
New nanotechnology could lead to innovation in digital imaging
Led by Sri Sridhar, Distinguished Professor and Chair of Physics at Northeastern University, a team of researchers from the university's Electronic Materials Research Institute has published research that has resulted in a new breakthrough in the field of nanophotonics, the study of light at the nanoscale level. Utilizing nanomanufacturing processes, the researchers were able to develop an optical microlens with a step-like surface, instead of a smooth surface, that has the capacity to operate at infrared frequencies using the novel phenomenon of negative index refraction.
The team of researchers involved with this project includes Wentao Lu, Ph.D., Bernard Didier F. Casse, Ph.D., and Yongjiang Huang, all from Northeastern. Their findings were published in a recent edition of the journal, Applied Physics Letters.
By using nanolithography, a manufacturing technique used for electronic circuits, the team was able to fabricate this planoconcave lens in the nanoscale. These microlenses function in the infrared frequency range, which is used for optical communications, and use the novel phenomenon of negative refraction, which is not found to occur in natural materials, but can be created in artificial metamaterials. Microlenses are a critical component of optoelectronic devices, which utilize the flow of light rather than of conventional currents as is used in conventional electronics. The technology of these optical circuits has the capacity to create superior devices for data capturing and storage, and for producing high quality, high pixel count images.
"These nano-optical components are essential for superior optical transmission and reception of data that will be used in the future generation of imaging and communication devices," explained Sridhar. "Our ultimate goal is to integrate both optical and electronic devices onto a single chip, creating a single platform that utilizes both light and electrons with the potential to significantly increase the quality of circuits that are at the heart of all digital electronic devices today."
####
About Northeastern University
Founded in 1898, Northeastern University is a private research university located in the heart of Boston. Northeastern is a leader in interdisciplinary research, urban engagement, and the integration of classroom learning with real-world experience. The university’s distinctive cooperative education program, where students alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, is one of the largest and most innovative in the world. The University offers a comprehensive range of undergraduate and graduate programs leading to degrees through the doctorate in six undergraduate colleges, eight graduate schools, and two part-time divisions.
For more information, please click here
Contacts:
Jenny Eriksen
(617) 373-2802
j.eriksen@neu.edu.
Copyright © Northeastern University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Nanomedicine
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |