Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > In 'Mermaid's Hair,' a Search for a Cancer Cure

July 3rd, 2008

In 'Mermaid's Hair,' a Search for a Cancer Cure

Abstract:
A team of San Diego scientists are becoming increasingly convinced that the cure for cancer may be linked to a marine compound found within long strands of rosy-colored toxic bacteria that grow beneath mangroves in the South Pacific.

In a breakthrough discovery, researchers at the University of California, San Diego and the Scripps Institution of Oceanography identified a potent and stealthy compound in the bacteria, called "mermaid's hair," that can kill tumors and be delivered without harming healthy tissue -- thereby avoiding a major drawback to traditional cancer therapies such as radiation treatments and chemotherapy drugs.

Because the ScA compound naturally clumps into molecule-sized bits, called nanoparticles, it can be customized through nanotechnology to target specific cancer cells and spare healthy ones.

The minute particles can act like guided missiles, ferrying injected anti-cancer drugs to a tumor. Unlike conventional therapies, the particles Wrasidlo is using are expected to carry a small molecule that can attach itself and the drug only to blood vessels that feed the tumors.

Without nanotechnology, the compound would be too risky and would "never make it to the drug market," Wrasidlo said. "We now have the optimum way of getting the compound to the tumor and circulating it long-term throughout the body."

Source:
voiceofsandiego.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project