Home > News > Scientists achieve record light conversion efficiency in dye-sensitized solar cells
June 30th, 2008
Scientists achieve record light conversion efficiency in dye-sensitized solar cells
Abstract:
Researchers at the Changchun Institute of Applied Chemistry at the Chinese Academy of Sciences in China have achieved a record light conversion efficiency of 8.2% in solvent-free dye-sensitized solar cells.
This breakthrough in efficiency without the use of volatile organic solvents will make it possible to pursue large scale, outdoor practical application of lightweight, inexpensive, flexible dye-sensitized solar films that are stable over long periods of light and heat exposure.
Dye-sensitized solar cell technology, invented by Michael Gratzel at EPFL (Ecole Polytechnique Federale de Lausanne) in the 1990s, shows great promise as a cheap alternative to expensive silicon solar cells.
Dye-sensitized cells imitate the way that plants and certain algae convert sunlight into energy.
The cells are made up of a porous film of tiny (nanometer sized) white pigment particles made out of titanium dioxide. The latter are covered with a layer of dye, which is in contact with an electrolyte solution.
When solar radiation hits the dye, it injects a negative charge in the pigment nanoparticle and a positive charge into the electrolyte resulting in the conversion of sunlight into electrical energy.
The cells are inexpensive, easy to produce and can withstand long exposure to light and heat compared with traditional silicon-based solar cells.
Source:
beijingnews.net
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |