Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Large-Scale Screening of Nanomaterial Toxicity and Activity

Abstract:
As researchers develop an ever-expanding toolkit of nanoparticles for use as drug and imaging agent delivery vehicles, there is a growing need to understand how a given nanoparticle's physical and chemical properties affect biological activity and toxicity. Now, two researchers working independently of one another have develop new methods for measuring the biological activity of nanomaterials in a highly systematic manner that enable them to draw important insights about nanomaterial biologic activity.

Large-Scale Screening of Nanomaterial Toxicity and Activity

Bethesda , MD | Posted on June 16th, 2008

Reporting its work in the Proceedings of the National Academy of Sciences of the United States of America, a research group lead by Ralph Weissleder, M.D., Ph.D., co-principal investigator of the MIT-Harvard Center of Cancer Nanotechnology Excellence, and Stuart Schreiber, Ph.D., of the Broad Institute of Harvard and MIT, describes its development of a broad panel of in vitro assays that measure a variety of nanoparticle properties. They then use a technique known as hierarchical clustering that identifies nanomaterials that have similar biological effects across a wide range of assays. This approach enabled the investigators to create strong structure-activity relationships that correlate nanoparticle properties to biological activities.

In the experiments reported in this paper, the investigators tested some 50 different nanomaterials. They used four different cell lines for their assays and measured biological activity at four different nanoparticle doses. The large amount of data generated by this type of extensive analysis enabled the researchers to identify different relationships with a high degree of statistical significance. This analysis clearly showed that there were definite correlations between the physical and chemical properties of a nanoparticle and biological activity. More importantly, the investigators found that the relationships identified using in vitro assays correlated with activity observed when the nanoparticles were administered to test animals.

Taking a similar approach, Nicholas Kotov, Ph.D., of the University of Michigan and Yurii Gun'ko, Ph.D., of Trinity College Dublin, led a team of investigators that developed a series of high-content screening assays for use in testing the cytotoxicity of a large number of quantum dots and gold nanoparticles. These assays, the researchers note, enabled them to distinguish subtle differences in cytotoxicity among similar nanomaterials, which should set the stage for conducting multiparametric analyses on large numbers of particles in a rapid and quantitative manner. The investigators are now working to modify their assay protocols to include biological properties such as transport across the cell membrane.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:


National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Perturbational Profiling of Nanomaterial Biologic Activity.”

View abstract - “High-Content Screening as a Universal Tool for Fingerprinting of Cytotoxicity of Nanoparticles.”

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Tools

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project