Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Multifunctional Nanoparticles Image, Target, and Treat Tumors

Abstract:
Encapsulating magnetic iron oxide nanoparticles within a silica shell has yielded a new multifunctional nanoparticle that has the potential to image, target, and treat tumors with water-insoluble anticancer drugs. A report of this work appears in the journal ACS Nano.

Multifunctional Nanoparticles Image, Target, and Treat Tumors

Bethesda , MD | Posted on May 21st, 2008


Back
Nanotech News


May 2008

Multifunctional Nanoparticles Image, Target, and Treat Tumors

Encapsulating magnetic iron oxide nanoparticles within a silica shell has yielded a new multifunctional nanoparticle that has the potential to image, target, and treat tumors with water-insoluble anticancer drugs. A report of this work appears in the journal ACS Nano.

Jeffery Zink, Ph.D., led a research team at the University of California, Los Angeles, that created the new nanoparticles, which contain an iron oxide nanoparticle core and a porous silica shell. The investigators coated the resulting nanoparticles with folic acid, a tumor targeting agent, and a fluorescent dye to enable optical imaging. Soaking the nanoparticles in a solvent containing either paclitaxel or camptothecin, both of which are poorly soluble in water and difficult to deliver to tumors as a result, resulted in significant drug loading through the pores in the silica shell. Tests showed that the drug-loaded nanoparticles were stable for at least 2 months.

Experiments with pancreatic cancer cells demonstrated that the targeted nanoparticles were taken up rapidly by cancer cells, whereas untargeted control nanoparticles were not. The researchers were able to quantify nanoparticle uptake using both MRI and optical spectroscopy thanks to the iron oxide nanoparticle core and fluorescent dyes, respectively. The targeted nanoparticles were also more toxic to the tumor cells than were untargeted nanoparticles.

This work, which was supported in part by the NCI, is detailed in the paper "Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery." An abstract of this paper is available at the journal's Web site.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project