Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > The wonders of mechanical self-replication

April 25th, 2008

The wonders of mechanical self-replication

Abstract:
Most consumer products have a complex history, developing from raw materials to their current state. The stages of manufacturing are often overlooked by the end user, but they invariably involve either particular equipment or a skilled craftsman; in most automated processes, machines are the preferred method. Throughout the assembly line, each of these machines is highly specialized to perform one or two tasks: While one device might rivet two plates together, it cannot weld, glue, or cut as well. If the manufacturing process calls for such operations, they will have to be performed by another machine.

As if it weren't complex enough already, consider the equipment necessary to manufacture these manufacturing machines. The concept quickly develops into a tangled web of raw materials, generalized manufacturing techniques, and specialized assembly line equipment. There is a way to simplify it all, though. The technique seems bizarre to seasoned industrialists, but is strangely familiar to all biological organisms: self-assembly. Researchers have long toyed with proof-of-concept experiments utilizing baseball-size or larger robotic sub-units to arrange themselves into a functioning "organism," but one team of scientists at Purdue University has finally achieved the same feat at the molecular level.

"Autopoiesis" is a term derived from Greek words, which means "self-creation." It can be applied to evolution to describe the process undergone by inorganic molecules to form the building blocks of life. Biologically, it can be used to describe the eukaryotic cell, which produces more of itself through mitosis or meiosis. These are natural occurrences familiar to most of us on at least some level. Alternatively, self-replicating machines pioneered by scientists like John von Neumann can theoretically self-replicate, drawing from local resources to build more machines. These machines have been called clanking replicators, von Neumann machines, and universal constructors. Much of the premise of nanotechnology is based around self-replicating machines. The converse of autopoiesis is allopoiesis; current manufacturing techniques are allopoietic.

Source:
bcheights.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Molecular Nanotechnology

Quantum pumping in molecular junctions August 16th, 2024

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project