Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 2008 NanoBio Symposium Preview: Jennifer West

Jennifer West. Speaker at the 2008 NanoBio symposium. Credit: Rice University
Jennifer West. Speaker at the 2008 NanoBio symposium. Credit: Rice University

Abstract:
Clinicians may soon be able to add metallic nanoshells to the arsenal of weapons that they can use to preserve and protect human health. Metallic nanoshells— super tiny spheres composed of layers of differing materials—allow light to safely penetrate deep within tissues to help diagnose or treat disease, says bioengineer Jennifer West. West will discuss her current work with nanoshells at the second annual Johns Hopkins NanoBio Symposium, hosted by the Institute for NanoBioTechnology, on May 1 -2 at the School of Medicine.

2008 NanoBio Symposium Preview: Jennifer West

Baltimore, MD | Posted on April 4th, 2008

West is the Isabel C. Cameron Professor of Bioengineering at Rice University in Houston, Texas. She was previously named one of the world's 100 Top Young Innovators by Technology Review, the innovation magazine of the Massachusetts Institute of Technology, where she earned her undergraduate degree.

Nanoshells have the ability to be "optically tuned," West says. "Depending on their size and composition, we can make them either absorb or scatter light anywhere in the electromagnetic spectrum."

This property of optical tuning means nanoshells can either heat up locally to destroy tumor tissue or reflect light back to improve imaging—or both—over a range of light wavelengths. The materials used for each layer of the nanoshell determine the wavelengths over which the device can be tuned. A typical nanoshell can be fabricated by fusing an outer layer of a biocompatible metal, such as gold, over an inner core of silica, West says, though other materials also are used.

Since the nanoshells typically "tune" over a very narrow range of near infrared light (from 700-900 nanometers in the spectrum), they will neither heat up the water in tissues nor will they be absorbed by hemoglobin in blood or melanin in the skin, West explains, This property prevents the nanoshells from causing collateral damage to the surrounding tissues.

"A light shone from outside the body can pass harmlessly through tissue," West says. "There is such deep penetration of light that this technology can be used for whole breast biopsy and whole brain imaging."

The property of optical tunability also makes nanoshells an excellent tool for detecting viruses and bacteria in whole blood, West adds. Nanoshells with antibodies attached to their surfaces interact with the antigen in question and form clumps. The clumps diffuse the light reflected by the nanoshells, West explains, and one can determine the concentration of whatever is being studied by the degree of diffusion.

West says that she and the inventor of the nanoshell—Naomi Halas, the Stanley C. Moore Professor of Electrical and Computer Engineering and Professor of Chemistry at Rice—are currently working with a Texas firm to commercialize the use of a nanoshell-based medical device for clinical use.

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 155 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:


* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project