Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Size matters - new frontiers in measuring radiation

March 12th, 2008

Size matters - new frontiers in measuring radiation

Abstract:
As Richard Branson gears up to commercialise flights into space, a team of Australian scientists are pushing new frontiers that could not only make air and space travel safer but also help in the fight against cancer.

In a world first, Australian scientists have designed and developed a miniature radiation detector the size of a human cell nucleus. The revolutionary device called a micro-dosimeter can accurately measure how much energy is deposited by radiation in the cell nucleus which greatly assists in the understanding of the effect of the radiation on the cell.

The technology was developed in collaboration between the University of Wollongong, ANSTO and the University of New South Wales based on an original concept from Professor Anatoly Rozenfeld of the University of Wollongong.

"This is a significant breakthrough in our ability to successfully measure different kinds of radiation and accurately predict the cancer risk of radiation exposure," said Anatoly.

Anatoly explained that conventional detectors are not sophisticated enough to give accurate readings as they are only designed to measure radiation in large volumes and only for specific types of radiation, namely gamma and neutron.

To build a micro-dosimeter, the volume of a cell nucleus, unique nanofabrication techniques were employed at the Nanotechnology Fabrication Facility at the University of New South Wales.

Source:
sciencealert.com.au

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Announcements

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project