Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Switchable nanovalves: pH-sensitive pseudorotaxane as reversible gate for drug nanotransporter

Abstract:
We encounter valves every day, whether in the water faucet, the carburetor in our car, or our bicycle tire tube. Valves are also present in the world of nanotechnology. A team of researchers headed by J. Fraser Stoddart and Jeffrey I. Zink at the University of California, Los Angeles, has now developed a new nanovalve.

Switchable nanovalves: pH-sensitive pseudorotaxane as reversible gate for drug nanotransporter

Los Angeles, CA | Posted on March 11th, 2008

In the journal Angewandte Chemie, the scientists reveal what is special about it: In contrast to prior versions, which only function in organic solvents, this valve operates in an aqueous environment and under physiological conditions—prerequisites for any application as a gate for nanoscopic drug-transport agents, which need to set their cargo free at the right place and time.

In order for pharmaceuticals to affect only the target diseased organ, suitable nanopackaging is required to bring the drug to the target area and release it only there. One example of a good nanoscopic packaging agent is a tiny sphere of porous silica. Its pores can be filled with the drug and closed with tiny controllable valves.

The scientists attached stem-shaped molecules onto the surface of the porous spheres and filled the pores with guest molecules. At neutral to acidic pH values, they stacked cucurbituril molecules onto these "stems". Cucurbituril is a fat, ring-shaped molecule reminiscent of a pumpkin that has both ends hollowed out. The resulting supramolecular structure, which resembles a skewered pumpkin and is known to chemists as a pseudorotaxane, blocks the pores, so that the guest molecules cannot exit. The nanovalve is closed.

If the pH value is raised into the basic range, however, the interaction between the "pumpkins" and the "skewers" is weakened, and the pumpkins come off, opening the pores. Now the valves are open and the guest molecules can exit.

At this point the molecular details of the individual components still need to be tweaked. The goal: very small differences in pH values between healthy and diseased tissue should be sufficient to switch the valves and release the drug only in diseased cells.

Author: Jeffrey I. Zink, University of California, Los Angeles (USA), www.chem.ucla.edu/dept/Faculty/jzink/

Title: pH-Responsive Supramolecular Nanovalves Based on Cucurbit[6]uril Pseudorotaxanes

Angewandte Chemie International Edition 2008, 47, No. 12, 2222-2226, doi: 10.1002/anie.200705211

####

For more information, please click here

Contacts:
Department of Chemistry & Biochemistry
UCLA
Box 951569 (post)
607 Charles E. Young Drive East (courier)
Los Angeles, CA 90095-1569

Phone: (310) 825-1001
Fax: (310) 206-4038
Email:

Copyright © University of California, Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project