Home > Press > Keeping the Nano-Chips Cool with Graphene
Abstract:
A University of California - Riverside research team lead by professor Alexander A. Balandin of the department of electrical engineering working in collaboration with assistant professor Chun Ning Lau of the department of physics and astronomy discovered that graphene, a single plane layer of carbon atoms arranged in honey-comb lattice, manifests extremely high thermal conductivity exceeding that of diamond and carbon nanotubes. The superb heat conducting properties of graphene can be used for hot-spot cooling and thermal management of the nanometer scale electroniccircuits and optoelectronic devices.
Graphene is a recently discovered form of carbon, which consists of only
one layer of atoms arranged in a honey-comb lattice. It manifests a
number of intriguing properties. For example, electrons in graphene behave
like they are massless. An extraordinary high mobility of electrons in
graphene makes graphene a promising material for future ultra-fast
electronic circuits.
The University of California - Riverside (UCR) team led by electrical
engineering professor Balandin has recently discovered that
graphene is also a superior heat conductor. Its thermal conductivity
is several times larger than that of diamond - the best known bulk crystal
heat conductor and exceeds that of carbon nanotubes, which were -
up until now - beleived to be the best heat conductors amond all solid
materials.
The near room-temperature thermal conductivity of a single layer graphene
suspended across a trench in silicon wafer was measured to be up to 5300
W/mK. The measurement of the thermal conductivity of graphene, an object of just
one atom thick, required a development of completely new experimental method.
The measurements were performed with the help of the non-contact optical
technique based on the micro-Raman spectroscopy.
The superb thermal conductivity of graphene coupled with its plane
geometry and demonstrated integration with silicon make graphene
and graphene multi-layers promissing materials for
thermal management of the nanometer scale electronic circuits.
The discovery of the UCR team was reported this week in Nano Letters
[link to the paper is here:
http://pubs.acs.org/cgi-bin/abstract.cgi/nalefd/asap/abs/nl0731872.html ]
For more information, visit Professor Balandin's Nano-Device Laboratory
web-site at ndl.ee.ucr.edu/
####
For more information, please click here
Contacts:
Alexander A. Balandin, PhD
Professor, Department of Electrical Engineering
Chair, Materials Science and Engineering Program
Director, Nano-Device Laboratory
University of California - Riverside
Riverside, CA 92521 USA
Copyright © University of California - Riverside
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |