Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > New Hampshire Startup Makes World’s Largest Sheets of Carbon Nanotubes

February 23rd, 2008

New Hampshire Startup Makes World’s Largest Sheets of Carbon Nanotubes

Abstract:
Ever since scientists first figured out how to make carbon nanotubes—tiny cylinders of carbon with diameters of a few tens of nanometers—they've been touted as the material of the future: as strong as steel but far lighter, with the ability to conduct electricity in useful ways. The problem is that because they're so small, it's been difficult to make them at scales that would be useful to industry. You can't really build a lightweight airplane a few microns at a time, after all.

Now a New Hampshire company, Nanocomp Technologies of Concord, says it has overcome that limitation, producing sheets of carbon nanotubes that measure three feet by six feet and promising slabs 100 square feet in area as soon as this summer.

"From the get-go, we wanted to build something that would be manufacturable," says Peter Antoinette, CEO and co-founder of Nanocomp. "We're out to make value-added components out of that material."

The sheets, which the company can produce on its single machine at a rate of one per day, are composed of a series of nanotubes each about a millimeter long, overlapping each other randomly to form a thin mat. The tensile strength of the mat ranges from 200 to 500 megapascals—a measure of how tough it is to break. A sheet of aluminum of equivalent thickness, for comparison, has a strength of 500 megapascals. If Nanocomp takes further steps to align the nanotubes, the strength jumps to 1,200 megapascals.

Source:
xconomy.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Hanbat National University researchers present new technique to boost solid oxide fuel cell performance: Researchers demonstrate cobalt exsolution in solid oxide fuel cell cathodes in oxidizing atmospheres, presenting a new direction for fuel cell research October 3rd, 2025

Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project