Home > Press > Multiscale Simulation Methods for Nanomaterials Addresses a Range of Organic, Inorganic and Bio-Materials
Abstract:
Research and Markets (www.researchandmarkets.com/reports/c83299) has announced the addition of "Multiscale Simulation Methods for Nanomaterials" to their offering.
Molecular modeling, with greater accuracy than ever, allows for the fastest and most economical way of experimenting before creating a new product or material. While the scientific world has generally not solved the problem, methods have been developed which are proving feasible in solving specific problems or predicting specific phenomena or properties. Led by editors who have expertise in this area, Multiscale Simulation Methods for Materials explores the impact of using an arsenal of molecular modeling tools for various simulations in industrial settings.
It provides an overview of the available methods for providing atomistic simulation of a broad range of materials using our increased understanding of molecular scale, nanoscale, mesoscale, and macroscale phenomena. The strengths and weaknesses of the methods at hand are discussed within a context of real-world examples. Unlike other texts, this book focuses on the most cutting-edge area within computational chemistry and molecular modeling: macromolecular simulations of a range of materials, and is aimed more toward the chemistry and chemical engineering communities than any previously published titles in this area.
Increasingly useful in materials research and development, molecular modeling is a method that combines computational chemistry techniques with graphics visualization for simulating and predicting the structure, chemical processes, and properties of materials. This book focuses on the area of greatest interest within computational chemistry and molecular simulation--it aims to help predict properties on the macroscale using an understanding of molecular-, nano-, meso-, and macro-scale phenomena such as how molecules cluster, etc. The book will address a range of organic-, inorganic-, and bio-materials including nanomaterials.
Key Topics
- Overview of Multi-Scale Simulation Methods for Materials (Sanat S. Mohanty and Richard B. Ross).
- Influence of Water and Fatty Acid Molecules on Quantum Photoinduced Electron Tunneling in Self-Assembled Photosynthetic Centers of Minimal Protocells (A. Tamulis, V. Tamulis, H. Ziock, and S. Rasmussen).
- Optimizing the Electronic Properties of Carbon Nanotubes using Amphoteric Doping (Bob G. Sumpter and Vincent Meunier).
- Using Order and Nanoconfinement to Tailor Semiconducting Polymers - A Combined Experimental and Multiscale Computational Study (Michael L. Drummond, Bob G. Sumpter, Michael D. Barnes, William A. Shelton, Jr., and Robert J. Harrison).
- Coarse Grain to Atomistic Mapping Algorithm: A Tool for Multiscale Simulations (Steven O. Nielsen, Bernd Ensing, Preston B. Moore, and Michael L. Klein).
- Microscopic Insights into the Dynamics of Protein-Solvent Mixtures (Taner E. Dirama and Gustavo A. Carri).
- Mesoscale Simulations of Surface Modified Nanospheres in Solvents (Sanat Mohanty).
- Fixing Interatomic Potentials Using Multiscale Modeling: ad hoc Schemes for Coupling Atomic and Continuum Simulations (Clifford W. Padgett, J. David Schall, J. Wesley Crill, and Donald W. Brenner).
- Fully Analytic Implementation of Density Functional Theory for Efficient Calculations on Large Molecules (Rajendra R. Zope and Brett I. Dunlap).
- Al Nanoparticles: Accurate Potential Energy Functions and Physical Properties (Nathan E. Schultz, Ahren W. Jasper, Divesh Bhatt, J. Ilja Siepmann, and Donald G. Truhlar).
- Large-scale Monte Carlo Simulations for Aggregation, Self-Assembly and Phase Equilibria (Jake L. Rafferty, Ling Zhang, Nikolaj D. Zhuravlev, Kelly E. Anderson, Becky L. Eggimann, Matthew J. McGrath, and J. Ilja Siepmann).
- New QM/MM Models for Multi-scale Simulation of Phosphoryl Transfer Reactions in Solution (Kwangho Nam, Jiali Gao, and Darrin M. York).
- Modeling the Thermal Decomposition of Large Molecules and Nanostructures (Marc R. Nyden, Stanislav I. Stoliarov, and Vadim D. Knyazev).
- Predicting Dynamic Mesoscale Structure of Commercially Relevant Surfactant Solutions (Fiona Case).
Authors bio:
Richard B. Ross, PhD, has been a member of 3M Company's Corporate Materials Modeling Group since 1997. Dr. Ross's research at 3M focuses on applying computational chemical modeling methods to a wide range of research applications. He has coauthored thirty-three scientific articles, including five book chapters, and coedited a symposium proceedings book.
Sanat Mohanty, PhD, is a research scientist at 3M Company's Corporate Research Lab, focusing on the development of materials by manipulating self-assemblies of small molecules. Dr. Mohanty has written more than a dozen peer-reviewed journal papers, three book chapters, plus a chapter in the Encyclopedia of Chemical Processing on mesoscale modeling and analysis.
####
About Research and Markets
We are the leading source for international market research and market data. We hold ‘000’s of major research publications from most of the leading publishers, consultants and analysts. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends
We are a ‘One-Stop-Shop’ for market research reports and industry newsletters from specialist research firms and niche market analysts.
For more information, please click here
Contacts:
Research and Markets
Laura Wood, Senior Manager
Fax: +353 1 4100 980
Copyright © Business Wire 2008
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||