Home > News > NSF preparing for the demise of Moore's Law
February 13th, 2008
NSF preparing for the demise of Moore's Law
Abstract:
In anticipation of Moore's Law becoming irrelevant in the next 10 to 20 years, the National Science Foundation (NSF) wants funding for research that could lead to a replacement for current silicon technology.
The NSF last week requested US$20 million from the U.S. government for fiscal 2009 to start the "Science and Engineering Beyond Moore's Law" effort, which would fund academic research on technologies, including carbon nanotubes, quantum computing and massively multicore computers, that could improve and replace current transistor technology.
Moore's Law states that the number of transistors that can be placed on silicon, and its attendant computational capability, doubles every 18 months.
Human and economic progress in the U.S. over the past 20 years has depended on an increasing ability to do information processing and computing, said Michael Foster, division director of computing and communication foundations at NSF. "If the current technological basis of that ends, we've got to find some way to replace it or we're going to stop moving forward."
Source:
pcworld.idg.com.au
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Govt.-Legislation/Regulation/Funding/Policy
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |