Home > News > State Gives $500,000 to University and SiMPore Inc. to Develop Innovative Molecular Filter Technology
February 5th, 2008
State Gives $500,000 to University and SiMPore Inc. to Develop Innovative Molecular Filter Technology
Abstract:
The University of Rochester and SiMPore Inc., a Rochester-based biotechnology company, have received nearly $500,000 from New York State to help commercialize an ultra-thin membrane invented by University scientists.
Story:
The grant, awarded by the New York State Foundation for Science, Technology and Innovation ( NYSTAR ), is one of only two Technology Transfer Incentive Program grants given this year. The grants are designed to facilitate economic development in New York through university-based or corporate-sponsored research. SiMPore will match the NYSTAR grant to complete the project's funding.
The membrane is a porous silicon film so thin it's invisible edge-on, and may revolutionize the way doctors and scientists manipulate objects as small as a molecule. Despite being only 50 atoms thick, the filter can withstand surprisingly high pressures and may be a key to better separation of blood proteins for dialysis patients, speeding ion exchange in fuel cells, creating a new environment for growing neurological stem cells, and purifying air and water in hospitals and clean-rooms at the nanoscopic level. The technology will also enable researchers to identify and characterize molecules more readily so that scientists can study the roles these molecules play in health and disease.
"This grant will help us push into new frontiers of nanotechnology-based separations during the next two years," says James McGrath, associate professor of biomedical engineering at the University of Rochester and principal investigator on the grant. "By developing this membrane that can separate biological molecules, we're designing new tools which will ultimately speed medical discoveries."
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||