Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > DNA cages change size on demand

February 4th, 2008

DNA cages change size on demand

Abstract:
UK and German scientists have designed dynamic DNA cages which expand or contract on demand - and could be used to deliver drugs, or be the moving parts of nanomachines.

Researchers working with DNA have coaxed the strands into various impressive structures over the last two decades - including cubes, prisms, tetrahedra, and other exotic polyhedra. But these have usually been rigid and static: each edge consisting of a short double-stranded DNA segment.

But now, researchers based at the Universities of Oxford and Bielefield have built tetrahedra with one unusual edge that includes a single-stranded segment of DNA in its middle section[1]. This segment normally bunches up into a hairpin structure, but it straightens out - thus lengthening the entire edge - when it binds to a complementary single-stranded DNA segment.

By 'fuelling' the tetrahedra with the requisite complementary DNA segment, the researchers were able to expand the cage. Conversely, when they added 'anti-fuel' strands, they stuck to 'fuelling' DNA, pulling it away from the edge of the cage and making it contract again. The team also made a tetrahedron with two variable-length edges, which could independently expand or contract - dramatically changing the shape of the cage.

Source:
rsc.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project