Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > EU project on intelligent materials to regenerate bone tissue

Abstract:
More than half a million Europeans suffer from disorders in or serious defects of some part of their bone structure. So, graft or implant operations needed to repair the damage depend decisively on the materials used.

The Nanobiocom project, funded under the EU's Sixth Framework Programme (FP6), is working on the regeneration and repair of bone tissue. Its aim is to come up with a substitute for bone tissue that can repair the bone and regenerate it in such a way that it will be able to carry out similar functions to those in its natural state.

EU project on intelligent materials to regenerate bone tissue

Europe | Posted on January 25th, 2008

In the case of significant deterioration of the bone, it may be necessary for the implant to provide both functional and physiological properties of the damaged item. In such circumstances, the bone implants have to comply with certain requisites capable of contributing to a reconstruction of the deteriorated bone tissue in the most efficient and least harmful way possible, without any serious repercussions. Another requirement involves the carrying out of the mechanical functions of the damaged bone while the desired regeneration takes place.

In addition, the solutions have to be capable of remedying particularly serious damage, such as those due to congenital deficiencies, degenerative illnesses, cancerous disorders and other damage caused by accidents. The implants required for this type of solutions are more complex and sophisticated than the small implants known until now.

So the Nanobiocom project will seek to develop a support (scaffold) made out of a compound material that is 'intelligent', proactive, and capable of repairing and regenerating bone tissue. For this purpose, it has to be bioactive, capable of acting on the tissue-generating system and its corresponding genes, as well as responding correctly to the physiological and biological changes, both internal and external, of that system.

It is also necessary for its size and shape characteristics, as well as its mechanical functions, to correspond with those of healthy bones.

The specific tasks of the three-year project are now on fine tuning the intelligent material, based on nanoparticles and of a biodegradable nature. Also in the pipeline is the development of the cell culture in three dimensions, as well as ensuring the biocompatibility of the material.

Ultimately, the scientists involved in the frontier research project hope it will open new doors in the development of nanobiotechnology.

####

About European Union
The main objective of the NANOBIOCOM project is to establish the scientific and technological basis for the development new “intelligent” composite scaffold for bone tissue repair and regeneration with bioactive behavior capable of activating osteoprogenitor cells and genes and within an in vivo environment provide the interface to respond to physiological and biological changes, with mechanical and structural properties similar to a healthy bone and with size and shape required for reconstructing big skeletal defects.

For more information, please click here

Copyright © European Union

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Nanomedicine

Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

How a milk component could eliminate one of the biggest challenges in treating cancer and other disease, including rare diseases: Nebraska startup to use nanoparticles found in milk to target therapeutics to specific cells January 17th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project