Home > Press > EU project on intelligent materials to regenerate bone tissue
Abstract:
More than half a million Europeans suffer from disorders in or serious defects of some part of their bone structure. So, graft or implant operations needed to repair the damage depend decisively on the materials used.
The Nanobiocom project, funded under the EU's Sixth Framework Programme (FP6), is working on the regeneration and repair of bone tissue. Its aim is to come up with a substitute for bone tissue that can repair the bone and regenerate it in such a way that it will be able to carry out similar functions to those in its natural state.
In the case of significant deterioration of the bone, it may be necessary for the implant to provide both functional and physiological properties of the damaged item. In such circumstances, the bone implants have to comply with certain requisites capable of contributing to a reconstruction of the deteriorated bone tissue in the most efficient and least harmful way possible, without any serious repercussions. Another requirement involves the carrying out of the mechanical functions of the damaged bone while the desired regeneration takes place.
In addition, the solutions have to be capable of remedying particularly serious damage, such as those due to congenital deficiencies, degenerative illnesses, cancerous disorders and other damage caused by accidents. The implants required for this type of solutions are more complex and sophisticated than the small implants known until now.
So the Nanobiocom project will seek to develop a support (scaffold) made out of a compound material that is 'intelligent', proactive, and capable of repairing and regenerating bone tissue. For this purpose, it has to be bioactive, capable of acting on the tissue-generating system and its corresponding genes, as well as responding correctly to the physiological and biological changes, both internal and external, of that system.
It is also necessary for its size and shape characteristics, as well as its mechanical functions, to correspond with those of healthy bones.
The specific tasks of the three-year project are now on fine tuning the intelligent material, based on nanoparticles and of a biodegradable nature. Also in the pipeline is the development of the cell culture in three dimensions, as well as ensuring the biocompatibility of the material.
Ultimately, the scientists involved in the frontier research project hope it will open new doors in the development of nanobiotechnology.
####
About European Union
The main objective of the NANOBIOCOM project is to establish the scientific and technological basis for the development new “intelligent” composite scaffold for bone tissue repair and regeneration with bioactive behavior capable of activating osteoprogenitor cells and genes and within an in vivo environment provide the interface to respond to physiological and biological changes, with mechanical and structural properties similar to a healthy bone and with size and shape required for reconstructing big skeletal defects.
For more information, please click here
Copyright © European Union
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |